CRACOVIAN THEORETICAL RESULTS FOR ULTRAPERIPHERAL HEAVY-ION COLLISIONS

MARIOLA KŁUSEK-GAWENDA

Seminarium Środowiskowe Fizyki Cząstek

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP.

 $_{\gamma\gamma}$ scattering

FOUR-LEPTON PRODUCTION Electrons Muons

PROTON-ANTIPROTON PRODUCTION

CONCLUSION

INTERNEHODISCZAŃSU TITUTE OF NUCLEAR PHYSICS ISH ACADEMY OF SCIENCES

EPA

PHOTON-PHOTON SCATTERING FOUR-LEPTON PRODUCTION PROTON-ANTIPROTON PRODUCTION CONCLUSION

- M. K-G, P. Lebiedowicz, A. Szczurek, Light-by-light scattering in ultraperipheral Pb-Pb collisions at energies available at the CERN Large Hadron Collide, Phys. Rev. C93 (2016) 044907.
- M. K-G, W. Schäfer, A. Szczurek, Two-gluon exchange contribution to elastic γγ → γγ scattering and production of two-photons in ultraperipheral ultrarelativistic heavy ion and proton-proton collisions, Phys. Lett. B761 (2016) 399.
- M. K-G, A. Szczurek, Double scattering production of two positron–electron pairs in ultraperipheral heavy-ion collisions, Phys. Lett. **B763** (2016) 416,
- A. van Hameren, M. K-G, A. Szczurek, From the Single- and double-scattering production of four muons in ultraperipheral PbPb collisions at the Large Hadron Collider, Phys. Lett. B776 (2018) 84,
- M. K-G, P. Lebiedowicz, O. Nachtmann, A. Szczurek, From the γγ → pp̄ reaction to the production of pp̄ pairs in ultraperipheral ultrarelativistic heavy-ion collisions at the LHC, Phys. Rev. D96 (2017) 094029.

CRACOVIAN THEORETICAL RESULTS FOR UPC

EΡ

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION ELECTRONS MUONS

PROTON-ANTIPROTON PRODUCTION

CONCLUSION

EHINER NEWODNEZAŃSE STITUTE OF NUCLEAR PHYSICS DUSH ACADEMY OF SCIENCES

Photoproduction

THEORETICAL RESULTS FOR UPC

EP.

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION Electrons Muons

PROTON-ANTIPROTON PRODUCTION

CONCLUSION

THE HENERS NEWCOMICZANSU INSTITUTE OF NUCLEAR PHY POLISH ACADEMY OF SCIEN

CRACOVIAN THEORETICAL RESULTS FOR UPO

KRAKÓW, DECEMBER 1, 2017 3 / 40

EPA

NUCLEAR CROSS SECTION

$$\sigma_{\mathbf{A}_1\mathbf{A}_2\to\mathbf{A}_1\mathbf{A}_2\mathbf{X}_1\mathbf{X}_2}=\dots$$

NAIVELY
$$\Rightarrow \dots = \int d\omega_1 \, d\omega_2 \, n(\omega_1) n(\omega_2)$$

 $\times \sigma_{\gamma\gamma \to X_1 X_2}(\omega_1, \omega_2)$
 $n(\omega) = \int_{0}^{\infty} 2\pi b db \, N(\omega, b)$

CRACOVIAN THEORETICAL RESULTS FOR UPC

EPA

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION Electrons Muons

PROTON-ANTIPROTON PRODUCTION

CONCLUSION

MORE $CORRECTLY \Rightarrow \dots = \int N(\omega_1, \mathbf{b_1}) N(\omega_2, \mathbf{b_2}) S_{abs}^2(\mathbf{b})$ $\times \sigma_{\gamma\gamma \to X_1 X_2} (W_{\gamma\gamma})$ $\times d^2 b d\overline{b}_x d\overline{b}_y \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{X_1 X_2}$

PHOTON FLUX & FORM FACTOR

X charge distribution in nucleus

$$N(\omega, b) = \frac{Z^2 \alpha_{em}}{\pi^2 \beta^2} \frac{1}{\omega} \frac{1}{b^2} \times \left| \int d\chi \, \chi^2 \frac{F\left(\frac{\chi^2 + u^2}{b^2}\right)}{\chi^2 + u^2} J_1(\chi) \right|^2$$

EPA

$$\beta = \frac{p}{E}, \gamma = \frac{1}{\sqrt{1-\beta^2}}, u = \frac{\omega b}{\gamma \beta}, \chi = k_{\perp} b$$

FORM FACTOR

► point-like $F\left(\mathbf{q}^{2}\right) = \mathbf{1}$ $N\left(\omega, b\right) = \frac{Z^{2}\alpha_{egm}}{\pi^{2}\beta^{2}} \frac{1}{\omega} \frac{1}{b^{2}} \times u^{2} \left[K_{1}^{2}\left(u\right) + \frac{1}{\gamma^{2}}K_{0}^{2}\left(u\right)\right]$ ► monopole $F\left(\mathbf{q}^{2}\right) = \frac{\Lambda^{2}}{\Lambda^{2} + |\mathbf{q}|^{2}}$ $\sqrt{\langle r^{2} \rangle} = \sqrt{\frac{6}{\Lambda^{2}}} = 1 \text{ fm } A^{1/3}$

FIG .: Elastic scattering of electron-nucleus

CRACOVIAN THEORETICAL RESULTS FOR UPC

EPA

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION ELECTRONS

PROTON-ANTIPROTON PRODUCTION

FORM FACTOR

&

EPA

PHOTON FLUX

realistic charge distribution

$$F\left(\mathbf{q}^{2}\right) = \frac{4\pi}{|\mathbf{q}|} \int \rho(r) \sin(|\mathbf{q}| r) r dr$$

CRACOVIAN THEORETICAL RESULTS FOR UPC

EPA

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION ELECTRONS

PROTON-ANTIPROTON PRODUCTION

CONCLUSION

The HENRY NEWTON INSTITUTE OF N POLISH ACADEM

⇒ realistic

$AA { ightarrow} AA \gamma \gamma$ - Form factor

CRACOVIAN THEORETICAL RESULTS FOR UPC

EPA

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION Electrons Muons

Protonantiproton production

CONCLUSION

KRAKÓW, DECEMBER 1, 2017

$\gamma-\gamma$ elastic scattering

Well-known

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION Electrons Muons

PROTON-ANTIPROTON PRODUCTION

CONCLUSION

CRACOVIAN THEORETICAL RESULTS FOR UP

The one-loop W box diagram - LoopTools.

CRACOVIAN THEORETICAL RESULTS FOR UPC

EPA

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION Electrons Muons

PROTON-ANTIPROTON PRODUCTION

CONCLUSION

EHINER NEHIODACZAŃSI ISTITUTE OF NUCLEAR PHYSICS DUSH ACADEMY OF SCIENCES

VDM-REGGE CONTRIBUTION

$$\begin{aligned} \mathcal{A}_{\gamma\gamma\to\gamma\gamma}(\boldsymbol{s},t) &= \sum_{i}^{3}\sum_{j}^{3}\boldsymbol{C}_{\gamma\to V_{i}}^{2}\mathcal{A}_{V_{i}V_{j}\to V_{i}V_{j}}\boldsymbol{C}_{\gamma\to V_{j}}^{2}\\ &\approx \left(\sum_{i=1}^{3}\boldsymbol{C}_{\gamma\to V_{i}}^{2}\right)\mathcal{A}_{VV\to VV}(\boldsymbol{s},t)\left(\sum_{j=1}^{3}\boldsymbol{C}_{\gamma\to V_{j}}^{2}\right) \end{aligned}$$

$$i, j = \rho, \omega, \phi$$

$$\mathcal{A}_{VV \to VV}(s, t) = \mathcal{A}(s, t) \exp\left(\frac{B}{2}t\right)$$

$$\mathcal{A}(s,t) \approx s\left((1+i) C_{\mathsf{R}}\left(\frac{s}{s_0}\right)^{\alpha_{\mathsf{R}}(t)-1} + iC_{\mathsf{P}}\left(\frac{s}{s_0}\right)^{\alpha_{\mathsf{P}}(t)-1}\right)$$

→ $C_{\gamma \to V_i}^2 = \frac{e}{t_{V_i}}$ → C_P , C_P - Donnachie-Landshoff → $\alpha_B(t)$, $\alpha_P(t)$ - trajectories

10/40

 $\gamma\gamma$ SCATTERING

12/40

THE HINESK NEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSIC

Photon collisions: Photonic billiards might be the newest game!

www.eurekalert.org/pub_releases/

2016-05/thni-pcp051916.php

 $\sigma(PbPb \rightarrow PbPb\gamma\gamma) [nb]$ at LHC ($\sqrt{s_{NN}} = 5.5$ TeV) and FCC ($\sqrt{s_{NN}} = 39$ TeV)

		boxes		VDM-Regge	
	cuts	Frealistic	F _{monopole}	Frealistic	F _{monopole}
	$W_{\gamma\gamma} > 5 \text{GeV}$	306	349	31	36
	$W_{\gamma\gamma} > 5 \text{ GeV}, p_{t,\gamma} > 2 \text{ GeV}$	159	182	7E-9	8E-9
L	$E_{\gamma} > 3 \text{GeV}$	16 692	18 400	17	18
	$E_{\gamma}^{'} > 5 \mathrm{GeV}$	4 800	5 450	9	611
н	$E_{\gamma}^{'} > 3 \text{ GeV}, y_{\gamma} < 2.5$	183	210	8E-2	9E-2
	$ E_{\gamma}' > 5 \text{GeV}, y_{\gamma}' < 2.5$	54	61	4E-4	7E-4
С	$p_{t,\gamma} > 0.9 \text{ GeV}, y_{\gamma} < 0.7 \text{ (ALICE cuts)}$	107			
	$p_{t,\gamma} > 5.5 \text{GeV}, y_{\gamma} < 2.5 (\text{CMS cuts})$	10			
F	$W_{\gamma\gamma} > 5 \mathrm{GeV}$	6 169		882	
С	$E_{\gamma} > 3 \text{GeV}$	4 696 268		574	
C	· ·			1	

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP.

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION Electrons Muons

PROTON-ANTIPROTON PRODUCTION

CONCLUSION

POLISH AC

$AA{ ightarrow}AA\gamma\gamma$ - theoretical predictions VS. experiment

ATLAS Collaboration (M. Aaboud et al.), Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC, Nature Phys. 13 (2017) 852

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP.

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION Electrons Muons

Protonantiproton production

CONCLUSION

THEORETICAL ESULTS FOR UPC

EPA

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION ELECTRONS

PROTON-ANTIPROTON PRODUCTION

CONCLUSION

» P. Lebiedowicz, A. Szczurek,

The role of meson exchanges in light-by-light scattering, Phys. Lett. **B772** (2017) 330

 $\eta \& \eta'$ at UPC of AA...

KRAKÓW, DECEMBER 1, 2017

$M_{\gamma\gamma} < 5~{ m GeV} \Rightarrow \pi^0\pi^0~{ m Background}$

- ⇒ M. K-G, A. Szczurek, $\pi^+\pi^-$ and $\pi^0\pi^0$ pair production in photon-photon and in ultraperipheral ultrarelativistic heavy ion collisions, Phys. Rev. **C87** (2013) 054908
 - $\Rightarrow W_{\gamma\gamma} \in (2m_{\pi}-6) \text{ GeV}$
 - total cross section & angular distributions
 - $\begin{array}{c} \label{eq:simultaneously for} \\ \gamma\gamma \rightarrow \pi^+\pi^- \ \& \ \pi^0\pi^0 \end{array}$

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP.

$\gamma\gamma$ scattering

- FOUR-LEPTON PRODUCTION Electrons Muons
- PROTON-ANTIPROTON PRODUCTION

CONCLUSION

THE FOR LIPC

 $\gamma\gamma$ scattering

$AA \rightarrow AA\gamma\gamma$ for $M_{\gamma\gamma} > 2$ GeV ?

FOUR-LEPTON PRODUCTION

$$\begin{split} P_{AA} \xrightarrow{\gamma\gamma} AAI^{+}I^{-}(b; y_{I^{+}}, y_{I^{-}}, p_{t,l}) &= \int N(\omega_{1}, \mathbf{b}_{1}) N(\omega_{2}, \mathbf{b}_{2}) S_{abs}^{2}(\mathbf{b}) \\ &\times \frac{d\sigma_{\gamma\gamma \to h_{1}h_{2}}(W_{\gamma\gamma})}{dz} d\overline{b}_{x} d\overline{b}_{y} \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{l_{1}h_{2}} \\ \frac{d\sigma_{A_{1}A_{2} \to A_{1}A_{2}l_{1}^{+}l_{2}^{-}l_{3}^{+}l_{4}^{-}}{dy_{I^{+}}dy_{I^{-}}dp_{t,l}} &= \frac{1}{2} \int \frac{dP_{AA}^{I} \gamma\gamma}{AAI^{+}I^{-}}(b; y_{I^{+}}, y_{I^{-}}, p_{t,l})}{dy_{I^{+}}dy_{I^{-}}dp_{t,l}} \\ &\times \frac{dP_{AA}^{II} \gamma\gamma}{AAI^{+}I^{-}}(b; y_{I^{+}}, y_{I^{-}}, p_{t,l})}{dy_{I^{+}}dy_{I^{-}}dp_{t,l}} d^{2}b \\ &\sigma_{A_{1}A_{2} \to A_{1}A_{2}I^{+}I^{-}} &= \int \frac{dP_{AA}^{\gamma\gamma} AAI^{+}I^{-}}{dy_{I^{+}}dy_{I^{-}}dp_{t,l}}}{dy_{I^{+}}dy_{I^{-}}dp_{t,l}} d^{2}b \\ &\times dy_{I^{+}}dy_{I^{-}}dp_{t,l} \end{split}$$

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP.

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION

ELECTRO

MUONS

Protonantiproton production

CONCLUSION

$AA ightarrow AAe^+e^-$ - Calculations vs. data

> ALICE Collaboration (Abbas, E. et al.), Charmonium and e^+e^- pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Eur. Phys. J. **C73** (2013) 2617

CRACOVIAN THEORETICAL RESULTS FOR UPC

EΡ

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION ELECTRONS

Protonantiproton production

$AA ightarrow AAe^+e^-$ & $AA ightarrow AAe^+e^-e^+e^-$

 $p_t > 0.3 \, {\rm GeV}$

 $p_t > 2.0 \text{ GeV}$

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP.

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION Electrons

PROTON-ANTIPROTON PRODUCTION

$AA \rightarrow AAe^+e^- \& AA \rightarrow AAe^+e^-e^+e^-$

ELECTRONS

$AA \rightarrow AA\mu^+\mu^-$ - Calculations vs. data

> ATLAS Collaboration,

Measurement of high-mass dimuon pairs from ultraperipheral lead-lead collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-025

 $d\sigma$

MHONS

RHIC energy

Similar like for electron-positron production: $\sigma_{\mu^+\mu^-} \simeq 1000 \times \sigma_{\mu^+\mu^-\mu^+\mu^-}$

MUONS

KATIE- an event generator that is specially designed to deal with initial states that have an explicit transverse momentum dependence, but can also deal with on-shell initial states. KATIE is a parton-level generator for hadron scattering, but requires only a few adjustments to deal with photon scattering.

MHONS

4 У,,,

 $AA \rightarrow AA\mu^+\mu^-\mu^+\mu^-$

It is difficult to isolate range of SS domination

- *DS double-scattering mechanism
- *SS a NEW single-scattering mechanism

MHONS

CRACOVIAN THEORETICAL RESULTS FOR UPC

EΡ

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION Electrons

MUONS

Protonantiproton production

CMS and ALICE $\Rightarrow p_{t,cut} = 1 \text{ GeV}$ $ALICE \Rightarrow p_{t,CUI} = 0.2 \text{ GeV}$ ATLAS $\Rightarrow p_{t \text{ cut}} = 4 \text{ GeV}$ Potential background $\sqrt{s_{MN}} = 5.5 \text{ TeV}, |v| < 4.9$

Reaction	$p_{t,min} = 0.3 \text{ GeV}$	$p_{t,min} = 0.5 \text{ GeV}$
$PbPb \rightarrow PbPb\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	2.954 mb	8.862 µb
$PbPb ightarrow PbPbe^+e^-e^+e^-$	7.447 μ b	0.704 μ b

MIIONS

PROTON-ANTIPROTON PAIR PRODUCTION $\gamma(p_1, \lambda_1) + \gamma(p_2, \lambda_2) \rightarrow p(p_3, \lambda_3) + \bar{p}(p_4, \lambda_4)$

$$\begin{split} \frac{f_2(1950)}{\lambda_3\lambda_4} &= (-i)\,\epsilon_{1\mu}(\lambda_1)\,\epsilon_{2\nu}(\lambda_2)\,i\Gamma^{(f_2\gamma\gamma)\,\mu\nu\kappa\lambda}(\rho_1,\rho_2)\,i\Delta^{(f_2)}_{\kappa\lambda,\alpha\beta}(\rho_s) \\ &\times \bar{\upsilon}(\rho_3,\lambda_3)i\Gamma^{(f_2\rho\bar{\rho})\,\alpha\beta}(\rho_3,\rho_4)\,v(\rho_4,\lambda_4) \end{split}$$

 $\mathcal{M}_{\lambda_1 \lambda_0 \rightarrow}^{\prime_2(12/0)}$

 M. Diehl, P. Kroll, and C. Vogt, *Two-photon annihilation into baryon anti-baryon pairs*, Eur. Phys. J. C26 (2003) 567

Free parameters: off-shell form factors, the coupling constants.

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP.

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION

ELECTRO

MUONS

PROTON-ANTIPROTON PRODUCTION

$\gamma\gamma ightarrow \rho \bar{ ho}$ - results vs. data

$|\cos \theta| < 0.6$

Good description of $\sigma(W)$ data $\Rightarrow \frac{d\sigma}{dz}$?

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP.

 $_{\gamma\gamma}$ scattering

FOUR-LEPTON PRODUCTION

ELECTRO

MUONS

PROTON-ANTIPROTON PRODUCTION

ANGULAR DISTRIBUTIONS

CRACOVIAN THEORETICAL ESULTS FOR UPC

CRACOVIAN THEORETICAL RESULTS FOR UP

CONCLUSION

- O EPA in the impact parameter space
- $O \gamma \gamma \rightarrow X_1 X_2 (X_3 X_4)$
- O Realistic charge distribution
- O Description of the ATLAS data for Pb Pb \rightarrow Pb Pb $\gamma\gamma$ & for ALICE and ATLAS data for Pb Pb \rightarrow Pb Pb I^+I^-
- $O \text{ Pb Pb} \rightarrow \text{Pb Pb } \mu^+ \mu^- \mu^+ \mu^- \Rightarrow \sigma_{SS}^{\text{NEW}} < \sigma_{DS}$
- O Difficult to isolate a region where SS dominates
- $\bigcirc \ \sigma_{AA \to AAI^+I^-} \cong 1000 \times \sigma_{AA \to AAI^+I^-I^+I^-}$
- O The cross sections for four-lepton production strongly depend on the $p_{t,min}$ and y_l
- O Light-by-light scattering in UPC for $M_{\gamma\gamma} < 5 \text{ GeV}$ **new project**

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP.

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION Electrons Muons

PROTON-ANTIPROTON PRODUCTION

Thank you

CRACOVIAN THEORETICAL RESULTS FOR UP(

Four-lepton production

ELECTRO

MUONS

PROTON-ANTIPROTON PRODUCTION

CONCLUSION

CRACOVIAN THEORETICAL RESULTS FOR UP

BACKUP SLIDES

CRACOVIAN THEORETICAL RESULTS FOR UPC

EP.

 $\gamma\gamma$ scattering

FOUR-LEPTON PRODUCTION ELECTRONS

Protonantiproton production

CONCLUSION

NEEK NEHFORNCZAŃSKI TUTE OF NUCLEAR PHYSICS H ACADEMY OF SCIENCES

CONCLUSION

O Multiple Coulomb excitations

Ref.

M. Kłusek-Gawenda, M. Ciemała, W. Schäfer and A. Szczurek, Phys. Rev. C89 (2014) 054907,

"Electromagnetic excitation of nuclei and neutron evaporation in ultrarelativistic ultraperipheral heavy ion collisions"

ρ^0 production in heavy ion UPC with nuclear excitation

CRACOVIAN THEORETICAL RESULTS FOR UPC

EΡ

 $_{\gamma\gamma}$ scattering

FOUR-LEPTON PRODUCTION Electrons

MUONS

Protonantiproton production

CONCLUSION

$$\mathcal{A}(m) = \mathcal{A}_{\mathcal{BW}} \frac{\sqrt{mm_{\rho^0} \Gamma_{\rho^0}(m)}}{m^2 - m_{\rho^0}^2 + im_{\rho^0} \Gamma_{\rho^0}(m)} + \mathcal{B}_{\pi\pi}$$
running width: $\Gamma_{\rho^0}(m) = \Gamma_{\rho^0} \frac{m_{\rho^0}}{m} \left(\frac{m^2 - 4m_{\pi}^2}{m_{\rho^0}^2 - 4m_{\pi}^2}\right)^{3/2}$

Drell-Söding+ $f_2(1270)$

colored solid lines - $\Gamma_{o^0} = 150.2 \text{ MeV}$

colored dashed lines - $\Gamma_{o^0} = 140 \text{ MeV}$

> ALICE Collaboration,

 $\sqrt{s_{\rm NN}} = 2.76 \ TeV$, JHEP 1509 (2015) 095

