PROTON-PROTON CROSS-SECTION AT LHC ENERGIES: DATA - SIMULATION COMPARISON FOR THE STUDY OF RADIATION DAMAGE IN SILICON TRACKERS

Białasówka 4.10.2019

Agnieszka Obłakowska-Mucha WFiIS, AGH UST Kraków

Outline

1. History of total and inelastic proton-proton cross-section measurements.
2. Prediction for high energy.
3. LHC measurements.
4. Radiation damage in silicon sensors.
5. Simulation of fluence

- Value of the $\sigma_{t o t}$ determines the number of particles that pass through the detector.
- Silicon trackers are usually situated in the close proximity to the interaction point and are under influence of severe particle flux (VELO LHCb at 0.8 cm , ATLAS IBL at 3.5 cm, CMS 10 cm (?).

- Current technology of silicon sensors enables the operation at fluences up to $10^{16} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$.
- At the end of Run II LHCb and ATLAS silicon sensors were irradiated of the fluence that reached $10^{15} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$.
- During Run III (2021-2023) the amount of delivered data annually will reach value compared to the Run I and II together.
- Run IV (HL-LHC) the luminosity will be increased by one order of magnitude ($3000 \mathrm{fb}^{-1}$) and new structures MUST be installed in the experiments.

Methods for $\sigma_{t o t}$ measurement

Cross-sections can not be calculated by quantum chromodynamics.

$$
\sigma_{t o t}=\underbrace{\sigma_{e l}}+\underbrace{\sigma_{\text {inel }}}=\sigma_{e l}+\sigma_{d i f f}+\sigma_{N D}
$$

Method 1 Method 2

$$
\eta=-\ln \left(\operatorname{tg} \frac{\theta}{2}\right)
$$

non diffractive $\cong \min$ bias

Total proton-proton cross-section - history

- $\sigma_{t o t}$ is not calculable in the framework of pQCD ; Regge model is used in HEP generators to describe kinematic area where QCD cannot be applied
- Decrease of proton - proton cross-section at low energies is described by a model with exchange of known reggeons.

- 2011: experimentally observed increase of $\sigma_{t o t}$ is explained if $\alpha(t=0)>1$, what can be achieved by adding the exchange of pomeron.
A. Obłąkowska-Mucha WFiIS AGH UST
- 1973: soft interactions and Intersection Storage Rings (ISR)

- LHC era: with the increase of energy, the contributions of reggeons can be neglected, while multi-pomeron exchange describes multiparton scattering.

- Elastic scattering amplitude is parametrised by the sum of diagrams with R and P exchange.
- Using optical theorem:

$$
\begin{aligned}
\sigma_{t o t}(s) & \approx s^{\alpha(0)-1} \\
\frac{d \sigma_{e l}}{d t} & \approx s^{2(\alpha(0)-1)} e^{-B|t|}
\end{aligned}
$$

where $\alpha(0)$ is an intercept of a Regge trajectory: $\alpha(t)=\alpha(0)+\alpha^{\prime} t ; t=\left(p_{1}-p_{2}\right)^{2}$;

- $\sigma_{t o t}$ can be parametrised as (before LHC, HERA and Tevatron data):

$$
\begin{gathered}
\sigma(s) \sim \ln ^{2}(s) \\
\sigma(s)=c_{1}+c_{R} s^{-0.5}+c_{S P} s^{0.067}+c_{h P} s^{0.45}
\end{gathered}
$$

- Measurement of the inelastic pp cross-section at a centre-of-mass energy of $\sqrt{ }=7 \mathrm{TeV}$, The LHCb collaboration, Aaij, R., Adeva, B. et al. J. High Energ. Phys. (2015) 2015: 129. https://doi.org/10.1007/JHEP02(2015)129
- Measurement of the inelastic $p p$ cross-section at a centre-of-mass energy of 13 TeV , The LHCb collaboration, Aaij, R., Adeva, B. et al. J. High Energ. Phys. (2018) 2018: 100. https://doi.org/10.1007/JHEP06(2018)100
- Measurement of the total cross section from elastic scattering in pp collisions at $\sqrt{ }=7 \mathrm{TeV}$ with the ATLAS detector - ATLAS Collaboration (Aad, Georges et al.) Nucl.Phys. B889 (2014) 486-548 arXiv:1408.5778 [hepex] CERN-PH-EP-2014-177
- Measurement of the total cross section from elastic scattering in pp collisions at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ with the ATLAS detector - ATLAS Collaboration (Aaboud, Morad et al.) Phys.Lett. B761 (2016) 158-178 arXiv:1607.06605 [hep-ex] CERN-EP-2016-158
- Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ with the ATLAS Detector at the LHC, Phys. Rev. Lett. 117, 182002 (2016), 10.1103/PhysRevLett.117.182002
- First measurement of elastic, inelastic and total cross-section at $\mathrm{s} V=13 \mathrm{TeV}$ by TOTEM and overview of crosssection data at LHC energies - TOTEM Collaboration (Antchev, G. et al.) Eur.Phys.J. C79 (2019) no.2, 103 arXiv:1712.06153 [hep-ex] CERN-EP-2017-321, CERN-EP-2017-321-V2
- Luminosity-Independent Measurement of the Proton-Proton Total Cross Section at ${ }^{\mathrm{V}}=8 \mathrm{TeV}$ - TOTEM Collaboration (Antchev, G. et al.) Phys.Rev.Lett. 111 (2013) no.1, 012001 TOTEM-2012-005, CERN-PH-EP-2012-354
- Measurement of the inelastic proton-proton cross section at $V_{s}=13 \mathrm{TeV}$, the CMS collaboration, Sirunyan, A.M., Tumasyan, A. et al. J. High Energ. Phys. (2018) 2018: 161

Total proton-proton cross-section derived from elastic

- Direct $\sigma_{\text {tot }}$ measurement is non-trival due to limited acceptance.
- 1973: Intersecrion Storage Rings (ISR) - via elastic cross-section measurement and the use of optical theorem: $\sigma_{\text {tot }}=4 \pi \operatorname{Im}\left[f_{e l}(t=0)\right]$
- Rise of $\sigma_{t o t}$ with \sqrt{s} was predicted
- Lumi dependent method:

$$
\sigma_{t o t}^{2}=\frac{16 \pi}{1+\varrho^{2}} \frac{1}{L}\left(\frac{d N_{e l}}{d t}\right)_{t=0}
$$

- Lumi independent method:

$$
\begin{gathered}
\sigma_{t o t}=\frac{16 \pi}{1+\varrho^{2}} \frac{1}{N_{t o t}}\left(\frac{d N_{e l}}{d t}\right)_{t=0} \\
\rho=\frac{\operatorname{Re} f(0)}{\operatorname{Im} f(0)} \simeq 0.009
\end{gathered}
$$

Elastic proton-proton cross-section

- To measure $\left(\frac{d N_{e l}}{d t}\right)_{t=0}$ we need to collect particles at very small angles.
- LHC: special runs and two experiments: TOTEM (0.5 km around CMS) and ALFA (at ATLAS)

Elastic proton-proton cross-section

TOTEM experiment (LHC, $\sim 0.5 \mathrm{~km}$ around CMS):

- elastic pp scattering, $\frac{d \sigma_{e l}}{d t}(t)$,
- diffractive (single, double, central) (with CMS),
- total cross-section.

Elastic x-section can be measured up to $0.36<|t|<2.5 \mathrm{GeV}^{2}$ with very small azimutal angles θ :

$$
t=\left(p_{1}-p_{2}\right)^{2}=4 p^{2} \sin ^{2} \frac{\theta}{2} \simeq-(p \theta)^{2}
$$

Special LHC runs enables $|t|<0.01 \mathrm{GeV}^{2}$

$$
\begin{aligned}
& \frac{d \sigma_{e l}}{d t}=\frac{d \sigma_{e l}}{d t}(\mathrm{t}=0) \mathrm{e}^{-\mathrm{B}|\mathrm{t}|} \\
& \sigma_{t o t}^{2} \sim \frac{d \sigma_{e l}}{d t}(\mathrm{t}=0)
\end{aligned}
$$

- $\sigma_{\text {inel }}=\sigma_{\text {tot }}-\sigma_{\text {el }}$

$$
\sqrt{s}=8 \mathrm{TeV} \quad \sigma_{t o t}=96.07 \pm 0.18(\exp) \pm 0.85 \text { (lumi) } \pm 0.31 \text { (extrap.) } \mathrm{mb}
$$

$$
\sqrt{s}=8 \mathrm{TeV} \quad \sigma_{\text {inel }}=71.78-74.7 \mathrm{mb}
$$

$$
\begin{aligned}
& \sigma_{\text {tot }}^{2} \sim \frac{d \sigma_{e l}}{d t}(\mathrm{t}=0) \\
& \sigma_{\text {inel }}=\sigma_{t o t}-\sigma_{e l} \\
& \sqrt{s}=7 \mathrm{TeV} \quad \sigma_{\text {inel }}=66.9-73.7 \mathrm{mb}
\end{aligned}
$$

A. Obłąkowska-Mucha WFiIS AGH UST

Inelastic pp cross-section in Run II (ATLAS)

- The measurement of the inelastic yield is based on the counting of hits in the Minimum Bias Trigger Scintillator in $2.07<\eta<3.86$ (diffractive and inclusive ND events with $M_{X}>13 \mathrm{GeV}$).
- Cross-section is calculated in fiducial volume of $\xi=M_{X}^{2}>$ 10^{-6} and extrapolated to full phase space with the help of models of ineleastic interactions.
- Ratio $f_{D}(M C)=\left(\sigma_{S D}+\sigma_{D D}\right) / \sigma_{\text {inel }}$ varied and compared with data for usage in simulation.
- Impact of generators?

The Pythia8 DL model predicts values of 71.0 mb , 69.1 mb , and 68.1 mb for $\varepsilon=0.06,0.085$, and 0.10 , respectively, all of which are compatible with the measurement. The Pythia8 MBR model predicts 70.1 mb , also in agreement with the measurement. The Epos LHC $(71.2 \mathrm{mb})$ and QGSJET-II (72.7 mb) predictions exceed the data by $2-3 \sigma$. The Pythia8 SS model predicts 74.4 mb , and thus exceeds the measured value by $\sim 4 \sigma$.

Inelastic pp cross-section in Run II (ATLAS)

- Cross-section is calculated in fiducial volume of $\xi=M_{X}^{2}>10^{-6}$ and extrapolated to full phase space with the help of models.
$\sigma^{7 \mathrm{TeV}}\left(\xi<5 \times 10^{-6}\right)=\sigma_{\text {inel }}^{7 \mathrm{TeV}}-\sigma^{7 \mathrm{TeV}^{(}}\left(\xi>5 \times 10^{-6}\right)=9.9 \pm 2.4 \mathrm{mb}$
diffrence between $\sigma_{\text {inel }}\left(7 \mathrm{TeV}\right.$, ALFA) and $\sigma_{\text {inel }}$ at 7 TeV with MBTS
- This procedure makes the measuremet less sensitive to models.

$$
\sqrt{s}=13 \mathrm{TeV} \quad \sigma_{\text {inel }}=78.1 \pm 0.6(\exp) \pm 1.3(\text { lumi }) \pm 2.5(\text { extrap. }) \mathrm{mb}
$$

Inelastic pp cross-section in Run I - II (CMS)

- Data collected with the CMS forward calorimeters HF and CASTOR $-6.6<\eta<-3$ and $3.0<\eta<5.2$.
- Sensitivity to a large part of the total inelastic cross section, including diffractive events with dissociated protons

Physics Letters B Vol 722, Issues 1-3, 2013, P 5-27

$$
\begin{gathered}
\sqrt{s}=13 \mathrm{TeV} \sigma_{\text {tot }}=68.6 \pm 0.5(\text { syst }) \pm 1.6 \text { (lumi) } \mathrm{mb} \\
\xi_{X}>10^{-7} \text { or } \xi_{Y}>10^{-6}
\end{gathered}
$$

measured cross section is significantly lower than predicted by models for hadronic scattering and ATLAS

- Selection of events with at least one prompt long-lived particle with $p_{t}>0.2 \mathrm{GeV}$ in $2.0<\eta<4.5$.
- Simulation: Pythia 6 and EvtGen,
- Measurement of $\sigma_{\text {inel }}^{\text {acc }}=\frac{N^{a c c}}{\mathcal{L}} ; N^{a c c}=\frac{N_{v i s}}{\varepsilon} ; \varepsilon$ from MC;
- Extrapolation to full phase space is done with Pythia 8 and different tunings (model dependent), using fraction of SD, DD, ND events.

$$
\begin{aligned}
& \sqrt{s}=7 \mathrm{TeV} \quad \sigma_{\text {inel }}=68.7 \pm 2.1(\exp) \pm 4.5 \text { (extrap.) } \mathrm{mb} \\
& \sqrt{s}=13 \mathrm{TeV} \quad \sigma_{\text {inel }}=75.4 \pm 3.0(\exp) \pm 4.5 \text { (extrap.) } \mathrm{mb}
\end{aligned}
$$

Differences in $\sigma_{i n}$ - should RD bother at all?

- For the radiation damage studies (monitoring, predictions and comparison with RD models) we need to know fluence in standardised units, called neutron equivalence fluence $n_{e q}$.
- We need to know much more than the $\sigma_{\text {tot }}$:
- how many pp interactions occurred in $1 \mathrm{fb}^{-1}$,
- how many particles were produced (multiplicity),
- type of particles (protons, neutrons, pions, kaons),
- energy spectrum,
- angular distribution.
- Determination of $n_{e q}$ depends very strongly on $\sigma_{i n}$ and physics model used in generators.

A. Obłąkowska-Mucha WFiIS AGH UST
- The particle flux is converted into neutron equivalence units with an experimentally established hardness factor:

$$
\phi\left(E_{p}\right)
$$

Increase of leakage current: $\Delta I=\alpha V_{o l} \phi_{e q}$

Decrease of efficiency

A. Obłakowska-Mucha WFiIS AGH UST

Change of depletion voltage

Fluence definition

1. Fluence - number of particles $d N$ traversing the sphere of cross section $d S$:

$$
\phi=\frac{d N}{d S}
$$

When counting particles hitting siliconsensors one should consider $\cos \theta$:

$$
\phi=\frac{d N}{d S_{\|}}=\frac{d N}{d S \cos \theta}
$$

Geant 4

+ Pythia

That makes the particles crossing at large angle the most dangerous.
2. We can take the track length - fluence is then defined as the tracklength density:

$$
\phi=\frac{\sum l}{V}=\frac{\sum d / \cos \theta}{V}
$$

what is equivalent to the definition above.

Comparison of models for fluence simulation

Motivation:

1. Differences between simulation of fluence with Pythia8/Geant4 and Fluka/DPMJET3 were reported.
a) Discrepancies among generators in event multiplicities at LHC energy.
b) Each experiment generates the minimum bias MC with different cuts.
2. Tools:
a) Pythia 8: stand-alone generator (without LHCb framework but with „standard" LHC settings).
b) DPMJET3: embedded in FLUKA, latest version. This is PHOJET generator for proton-proton collisions with Run II LHC tuning.

$\boldsymbol{N}_{\boldsymbol{h a d}}$	Pythia 8	DPMJET 3
pions	98	59
(a)protons	11.1	4.5
(a)neutrons	10.5	3.9
kaons	12.8	5.6
Total hadrons	$\mathbf{1 3 2 . 5}$	$\mathbf{7 3}$

$\sim 25 \%$ more particles is produced in Pythia 8.2 than

 in DPMJET 3 (first study)

DPMJET:

- originally DTUJET (1992) for soft hadronic interaction,
- $\sigma_{t o t}$ via Dual Parton Model and optical theorem,
- MPI and hard processes obtained with „hard-pomeron",
- DPMJET 3 is tuned to the LHC results and embedded in Fluka,
- diffractive processes are the integral part of the model, - no parameters can be set by the user.

Pythia:

- successor of fortran Pythia 6 (v4.8 in 1987),
- written to describe MPI with pQCD,
- constantly tuned,
- diffractive processes are a separate part simulated with a special models, v8 contains hard diffraction,
- many parameters to chose from during simulation.

DPMJET 3 tunes low- p_{T} processes into hard scale. Pythia uses pQCD to describe low- p_{T} processes. It may influence:

- multiplicity of events
- particle transverse momentum distribution.

Both models were revised and retuned after Run I LHC data and once more after results from $\sqrt{s}=13 \mathrm{TeV}$.
A. Obłąkowska-Mucha WFilS AGH UST

Comparison of models for fluence simulation

Quite a lot of MC tunings are available:

None of these models describe min bias events correctly in wide range of $n_{c h}$ and p_{T}.

- Perturbative hard scattering cross-section of point-like partons:

$$
\sigma=\sum_{i, j, k} \int d x_{1} d x_{2} d \hat{t} \hat{\sigma}_{i j}^{k} \times f_{i}^{1}\left(x_{1}, Q^{2}\right) f_{j}^{2}\left(x_{2}, Q^{2}\right)
$$

- $\quad \hat{\sigma}_{i j}^{k}$ is the QCD hard-scattering cross-section for the k th process between parton flavour i and j, with a momentum transfer \hat{t}.

$$
\sigma\left(p_{T \min }\right)=\int_{p_{T m i n}}^{S / 4} d \hat{p}_{T}^{2} \frac{d \hat{\sigma}}{d \hat{p}_{T}^{2}}
$$

- $\hat{\sigma}_{i j}^{k}$ is dominated by t-channel gluon exchange, is divergent at low-momentum transfers like $1 / t^{2} \sim 1 / \hat{p}_{T}^{4}$.
- The main parameter introduced to regularize the divergency when $p_{T} \rightarrow 0$ in Pythia is $p_{T 0}$:

$$
1 / \hat{p}_{T}^{4} \rightarrow 1 /\left(\hat{p}_{T}^{2}+\hat{p}_{T 0}^{2}\right)^{2}
$$

- „Tuninng" Pythia means „changing $p_{T 0} "$ (and a few further parameters) to describe better the data.
- Pythia 6 used lower values of $p_{T 0}$ and generated events with too high multiplicity

Both generators were revised and tuned to LHC $\sqrt{s}=13 \mathrm{TeV}$ data.

DPMJET3

Differences:

- number of generated particles (long tail in multiplicity in DPMJET3).
- mean transverse momentum is lower in case of DPMJET3

Particle fluence simulation

- Simulation of proton-proton collision with Fluka and two generators: DPMJET3 and Pythia 8.2.
- Silicon barrel layers with radius from 6 to 14 cm .
- Fluence ϕ calculated for $1 \mathrm{fb}^{-1}$ as track-length density.

A. Obłąkowska-Mucha WFiIS AGH UST

n_{eq} and particle fluence comparison

- Simulation of proton-proton collision with Fluka and two generators: DPMJET3 and Pythia 8.2.
- Particle fluence:

Main contribution to $\phi_{e q}$ comes from pions (80%).
The overall number of particles is lower in DPMJET3, but the number of pions is similar.
Therefore $\phi_{e q}$ is the same in places close to the Interaction Point.

Fluence simulation for LHCb VELO in Run I-II

- VELO LHCb was situated 8 mm from IP.
- The radiation field was strong and nonuniform

\sqrt{s}	7 TeV	13 TeV
Delivered Lumi $\left[f b^{-1}\right]$	3.46	6.15
$\sigma_{p p}[\mathrm{mb}]$	71	78
$N_{p p} / 1 \mathrm{fb}^{-1}$	71×10^{12}	78×10^{12}

$$
\phi_{a v g}=0.98 \times 10^{14} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}
$$

$$
\phi_{\max }=6.5 \times 10^{14} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}
$$

Fluence simulation for LHCb VELO in Run III

- Pixel VELO LHCb (Upgraded) will be situated 5 mm from IP.

- The maximum fluence in the inner tip of one of the most irradiated sensor:

$$
\phi_{\max }=1.72 \times 10^{14} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2} \text { for } 1 \mathrm{fb}^{-1}
$$

- For the $50 \mathrm{fb}^{-1}$ in Run III:

$$
\phi_{\max , 50 f b}=0.86 \times 10^{16} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}
$$

Conclusions

- The measurement of the inelastic proton-proton cross-section are crucial for the prediction of the radiation damage in silicon sensors for LHC Run III and IV.
- Physics model used in generators need to be tuned to the current experimental results.
- It seems that fluence predictions overestimate the real value.
- But if not - the inner part of VELO Pixel sensors close to the IP will reach the limit of optimal performance.
LHC / HL-LHC Plan

A. Obłąkowska-Mucha WFiIS AGH UST
- Total proton-proton cross-section $\sigma_{t o t}$ before LHC
- 1973: Intersection Storage Rings (ISR)

- Total proton-proton cross-section $\sigma_{t o t}$ before LHC
- 1973: Intersecrion Storage Rings (ISR)

A. Obłąkowska-Mucha WFiIS AGH UST

