Small- q_{T} factorization and its use for higher-order calculations in QCD

Sebastian Sapeta

IFJ PAN Kraków

In collaboration with
Michał Czakon, René Ángeles-Martinez, Tomoki Goda, Philipp Müllender

Outline

1. The cross sections in QCD factorize in the limit of small transverse momentum, q_{T}, of the produced object

Outline

1. The cross sections in QCD factorize in the limit of small transverse momentum, q_{T}, of the produced object
2. The ingredients which appears in the factorization formula are known as the hard, the soft and the beam functions

Outline

1. The cross sections in QCD factorize in the limit of small transverse momentum, q_{T}, of the produced object
2. The ingredients which appears in the factorization formula are known as the hard, the soft and the beam functions
3. I shall present the complete result for the NNLO soft function for top pair production and report on progress towards the $\mathrm{N}^{3} \mathrm{LO}$ beam functions

Big picture

- Each collision at the LHC involves interactions of quarks and gluons \hookrightarrow Understanding of strong interactions is critical to fully exploit potential of the LHC at the new energy frontier
- Stringent limits on BSM have been set. So far, no new physics \hookrightarrow This calls for even more precise theoretical predictions

Big picture

- Each collision at the LHC involves interactions of quarks and gluons \hookrightarrow Understanding of strong interactions is critical to fully exploit potential of the LHC at the new energy frontier
- Stringent limits on BSM have been set. So far, no new physics \hookrightarrow This calls for even more precise theoretical predictions

Predictions in perturbative QCD

- In the region where the strong coupling $\alpha_{s} \ll 1$, fixed-order perturbative expansions is expected to work well

$$
\sigma=\underbrace{\sigma_{0}}_{\mathrm{LO}}+\underbrace{\alpha_{s} \sigma_{1}}_{\mathrm{NLO}}+\underbrace{\alpha_{s}^{2} \sigma_{2}}_{\mathrm{NNLO}}+\underbrace{\alpha_{s}^{3} \sigma_{3}}_{\mathrm{N}^{3} \mathrm{LO}}+\cdots
$$

Anatomy of perturbative QCD calculations

Leading Order (LO)

Anatomy of perturbative QCD calculations

Next-to-Leading Order (NLO)

Virtual

Anatomy of perturbative QCD calculations

$$
\sigma_{\mathrm{NLO}}=R+V
$$

- R and V are separately divergent in the soft and collinear limits (IR divergences)

Anatomy of perturbative QCD calculations

$$
\sigma_{\mathrm{NLO}}=R+V
$$

- R and V are separately divergent in the soft and collinear limits (IR divergences)
- Kinoshita-Lee-Nauenberg theorem guarantees that $\sigma_{\text {NLO }}$ is finite
\hookrightarrow Divergences of R and V have to cancel

Anatomy of perturbative QCD calculations

$$
\sigma_{\mathrm{NLO}}=R+V
$$

- R and V are separately divergent in the soft and collinear limits (IR divergences)
- Kinoshita-Lee-Nauenberg theorem guarantees that $\sigma_{\text {NLO }}$ is finite
\hookrightarrow Divergences of R and V have to cancel

How to carry out this cancellation in practice, given that R is integrated in 4 while V in d dimensions?

Anatomy of perturbative QCD calculations

- Subtraction

$$
d=4-2 \epsilon
$$

$$
\sigma_{\mathrm{NLO}}=\lim _{\epsilon \rightarrow 0}\left\{\int d^{d} k R+\int d^{d} k V\right\}
$$

Anatomy of perturbative QCD calculations

- Subtraction

$$
d=4-2 \epsilon
$$

$$
\begin{aligned}
\sigma_{\mathrm{NLO}} & =\lim _{\epsilon \rightarrow 0}\left\{\int d^{d} k R+\int d^{d} k V\right\} \\
& =\lim _{\epsilon \rightarrow 0}\{\underbrace{\int d^{4} k(R-S)}_{\text {finite }}+\underbrace{\int d^{d} k S}_{\frac{1}{\epsilon}}+\underbrace{\int d^{d} k V}_{-\frac{1}{\epsilon}}\}
\end{aligned}
$$

$S \simeq R$ in soft/collinear limit but simpler, hence integrable analytically in d dimensions

Anatomy of perturbative QCD calculations

- Subtraction

$$
d=4-2 \epsilon
$$

$$
\begin{aligned}
\sigma_{\mathrm{NLO}} & =\lim _{\epsilon \rightarrow 0}\left\{\int d^{d} k R+\int d^{d} k V\right\} \\
& =\lim _{\epsilon \rightarrow 0}\{\underbrace{\int d^{4} k(R-S)}_{\text {finite }}+\underbrace{\int d^{d} k S}_{\frac{1}{\epsilon}}+\underbrace{\int d^{d} k V}_{-\frac{1}{\epsilon}}\}
\end{aligned}
$$

$S \simeq R$ in soft/collinear limit but simpler, hence integrable analytically in d dimensions

- Slicing

$$
\sigma_{\mathrm{NLO}}=\int d^{4} k(R+V)
$$

Anatomy of perturbative QCD calculations

- Subtraction

$$
d=4-2 \epsilon
$$

$$
\begin{aligned}
\sigma_{\mathrm{NLO}} & =\lim _{\epsilon \rightarrow 0}\left\{\int d^{d} k R+\int d^{d} k V\right\} \\
& =\lim _{\epsilon \rightarrow 0}\{\underbrace{\int d^{4} k(R-S)}_{\text {finite }}+\underbrace{\int d^{d} k S}_{\frac{1}{\epsilon}}+\underbrace{\int d^{d} k V}_{-\frac{1}{\epsilon}}\}
\end{aligned}
$$

$S \simeq R$ in soft/collinear limit but simpler, hence integrable analytically in d dimensions

- Slicing

$$
\sigma_{\mathrm{NLO}}=\int d^{4} k(R+V)\left\{\Theta\left(\chi_{\mathrm{cut}}-\chi(k)\right)+\Theta\left(\chi(k)-\chi_{\mathrm{cut}}\right)\right\}
$$

Anatomy of perturbative QCD calculations

- Subtraction

$$
d=4-2 \epsilon
$$

$$
\begin{aligned}
\sigma_{\mathrm{NLO}} & =\lim _{\epsilon \rightarrow 0}\left\{\int d^{d} k R+\int d^{d} k V\right\} \\
& =\lim _{\epsilon \rightarrow 0}\{\underbrace{\int d^{4} k(R-S)}_{\text {finite }}+\underbrace{\int d^{d} k S}_{\frac{1}{\epsilon}}+\underbrace{\int d^{d} k V}_{-\frac{1}{\epsilon}}\}
\end{aligned}
$$

$S \simeq R$ in soft/collinear limit but simpler, hence integrable analytically in d dimensions

- Slicing

$$
\begin{aligned}
\sigma_{\mathrm{NLO}} & =\int d^{4} k(R+V)\left\{\Theta\left(\chi_{\mathrm{cut}}-\chi(k)\right)+\Theta\left(\chi(k)-\chi_{\mathrm{cut}}\right)\right\} \\
& =\underbrace{\int d^{4} k(R+V) \Theta\left(\chi_{\mathrm{cut}}-\chi(k)\right)}_{\text {unresolved }}+\underbrace{\int d^{4} k R \Theta\left(\chi(k)-\chi_{\mathrm{cut}}\right)}_{\text {resolved }}
\end{aligned}
$$

The q_{T} slicing method

[Catani, Grazzini ‘07, '15]

$$
p+p \rightarrow F\left(q_{T}\right)+X
$$

$$
\sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}=\int_{0}^{q_{T, \mathrm{cut}}} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}+\int_{q_{T, \mathrm{cut}}}^{\infty} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}
$$

The q_{T} slicing method

[Catani, Grazzini ‘07, '15]

$$
\begin{gathered}
p+p \rightarrow F\left(q_{T}\right)+X \\
\sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}=\int_{0}^{q_{T}, \text { cut }} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}+\int_{q_{T, \text { cut }}}^{\infty} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}} \\
=\int_{0}^{q_{T}, \text { cut }} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}+\int_{q_{T, \text { cut }}}^{\infty} d q_{T} \frac{d \sigma_{\mathrm{N}^{m}-1 \mathrm{LO}}^{F+\mathrm{jet}}}{d q_{T}}
\end{gathered}
$$

The q_{T} slicing method

[Catani, Grazzini ‘07, '15]

$$
\begin{gathered}
p+p \rightarrow F\left(q_{T}\right)+X \\
\sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}=\int_{0}^{q_{T, \mathrm{cut}}} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}+\int_{q_{T, \mathrm{cut}}}^{\infty} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}} \\
=\int_{0}^{q_{T, \text { cut }}} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}+\int_{q_{T, \text { cut }}}^{\infty} d q_{T} \frac{d \sigma_{\mathrm{N}^{m-1} \mathrm{LO}}^{F+\mathrm{jet}}}{d q_{T}} \\
\text { enough to know in } \\
\text { small- } q_{T} \text { approximation }
\end{gathered}
$$

Factorization

where $F=H, Z, W, Z Z, W W, t \bar{t}, \ldots$

Factorization

where $F=H, Z, W, Z Z, W W, t \bar{t}, \ldots$

- $q^{2} \sim q_{T}^{2} \gg \Lambda_{\mathrm{QCD}} \quad$ collinear factorization

$$
\frac{d \sigma_{F}}{d \Phi}=\phi_{1} \otimes \phi_{2} \otimes C+\mathcal{O}\left(\frac{1}{q^{2}}\right)
$$

Factorization

where $F=H, Z, W, Z Z, W W, t \bar{t}, \ldots$

- $q^{2} \sim q_{T}^{2} \gg \Lambda_{\mathrm{QCD}} \quad$ collinear factorization

$$
\frac{d \sigma_{F}}{d \Phi}=\phi_{1} \otimes \phi_{2} \otimes C+\mathcal{O}\left(\frac{1}{q^{2}}\right)
$$

- $q^{2} \gg q_{T}^{2}>\Lambda_{\mathrm{QCD}} \quad$ small- q_{T} factorization

$$
\frac{d \sigma_{F}}{d \Phi}=\mathcal{B}_{1} \otimes \mathcal{B}_{2} \otimes \mathcal{H} \otimes \mathcal{S}+\mathcal{O}\left(\frac{q_{T}^{2}}{q^{2}}\right)
$$

All those functions

To get the cross section at N^{m} LO, we need to know all those functions at $\mathrm{N}^{m} \mathrm{LO}$

$$
\frac{d \sigma_{\digamma}^{\mathrm{N}^{m} \mathrm{LO}}}{d \Phi}=\mathcal{B}_{1}^{\mathrm{N}^{m} \mathrm{LO}} \otimes \mathcal{B}_{2}^{\mathrm{N}^{m} \mathrm{LO}} \otimes \mathcal{H}^{\mathrm{N}^{m} \mathrm{LO}} \otimes \mathcal{S}^{\mathrm{N}^{m} \mathrm{LO}}
$$

All those functions

To get the cross section at $\mathrm{N}^{m} \mathrm{LO}$, we need to know all those functions at $\mathrm{N}^{m} \mathrm{LO}$

$$
\frac{d \sigma_{F}^{\mathrm{N}^{m} \mathrm{LO}}}{d \Phi}=\mathcal{B}_{1}^{\mathrm{N}^{m} \mathrm{LO}} \otimes \mathcal{B}_{2}^{\mathrm{N}^{m} \mathrm{LO}} \otimes \mathcal{H}^{\mathrm{N}^{m} \mathrm{LO}} \otimes \mathcal{S}^{\mathrm{N}^{m} \mathrm{LO}}
$$

\mathcal{B} - beam function - radiation collinear to the beam, process-independent, known up to NNLO
\mathcal{H} - hard function - virtual corrections, process-dependent
\mathcal{S} - soft function - soft, real radiation, process-dependent

Today, I will focus on Sand B.

Renormalization

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \text { separately divergent } \\
& \mapsto \frac{d \sigma_{F}}{d \Phi}=\mathcal{B}_{1}^{(\text {bare })} \otimes \mathcal{B}_{2}^{\text {(bare) }} \otimes \operatorname{Tr}\left[\mathcal{H}^{(\text {bare })} \otimes \mathcal{S}^{(\text {bare })}\right] \\
& \text { finite }
\end{aligned}
$$

Renormalization

$$
\begin{aligned}
& \downarrow \downarrow \text { separately divergent } \\
& \longrightarrow \frac{d \sigma_{F}}{d \Phi}=\mathcal{B}_{1}^{\text {(bare) }} \otimes \mathcal{B}_{2}^{(\text {bare })} \otimes \operatorname{Tr}\left[\mathcal{H}^{\text {(bare) }} \otimes \mathcal{S}^{\text {(bare) }}\right] \\
& \text { finite } \quad=Z_{B} \mathcal{B}_{1}^{\text {(bare) }} \otimes Z_{B} \mathcal{B}_{2}^{\text {(bare) }} \otimes \operatorname{Tr}\left[\boldsymbol{Z}_{H}^{\dagger} \mathcal{H}^{(\text {bare })} \boldsymbol{Z}_{H} \otimes \boldsymbol{Z}_{S}^{\dagger} \mathcal{S}^{\text {(bare) }} \boldsymbol{Z}_{S}\right]
\end{aligned}
$$

Renormalization

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \text { separately divergent } \\
& \longrightarrow \frac{d \sigma_{F}}{d \Phi}=\mathcal{B}_{1}^{\text {(bare) }} \otimes \mathcal{B}_{2}^{(\text {bare })} \otimes \operatorname{Tr}\left[\mathcal{H}^{\text {(bare) }} \otimes \mathcal{S}^{\text {(bare) }}\right] \\
& \text { finite } \quad=Z_{B} \mathcal{B}_{1}^{\text {(bare })} \otimes \boldsymbol{Z}_{B} \mathcal{B}_{2}^{\text {(bare) }} \otimes \operatorname{Tr}\left[\boldsymbol{Z}_{H}^{\dagger} \mathcal{H}^{(\text {bare })} \boldsymbol{Z}_{H} \otimes \boldsymbol{Z}_{S}^{\dagger} \mathcal{S}^{\text {(bare) }} \boldsymbol{Z}_{S}\right] \\
& =\mathcal{B}_{1}(\mu) \otimes \mathcal{B}_{2}(\mu) \otimes \operatorname{Tr}[\mathcal{H}(\mu) \otimes \mathcal{S}(\mu)]
\end{aligned}
$$

Renormalization

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \text { separately divergent } \\
& \longrightarrow \frac{d \sigma_{F}}{d \Phi}=\mathcal{B}_{1}^{\text {(bare) }} \otimes \mathcal{B}_{2}^{(\text {bare })} \otimes \operatorname{Tr}\left[\mathcal{H}^{\text {(bare) }} \otimes \mathcal{S}^{\text {(bare) }}\right] \\
& \text { finite } \\
& =Z_{B} \mathcal{B}_{1}^{\text {(bare) }} \otimes \boldsymbol{Z}_{B} \mathcal{B}_{2}^{(\text {bare })} \otimes \operatorname{Tr}\left[\boldsymbol{Z}_{H}^{\dagger} \mathcal{H}^{(\text {bare })} \boldsymbol{Z}_{H} \otimes \boldsymbol{Z}_{S}^{\dagger} \mathcal{S}^{\text {(bare) }} \boldsymbol{Z}_{S}\right] \\
& =\mathcal{B}_{1}(\mu) \otimes \mathcal{B}_{2}(\mu) \otimes \operatorname{Tr}[\mathcal{H}(\mu) \otimes \mathcal{S}(\mu)] \\
& \text { separately finite }
\end{aligned}
$$

Renormalization

$$
\begin{aligned}
& \downarrow \downarrow \text { separately divergent } \\
& \Gamma \frac{d \sigma_{F}}{d \Phi}=\mathcal{B}_{1}^{(\text {bare })} \otimes \mathcal{B}_{2}^{(\text {bare })} \otimes \operatorname{Tr}\left[\mathcal{H}^{(\text {bare })} \otimes \mathcal{S}^{\text {(bare) }}\right] \\
& \text { finite } \\
& \begin{array}{l}
=Z_{B} \mathcal{B}_{1}^{\text {(bare })} \otimes Z_{B} \mathcal{B}_{2}^{\text {(bare) }} \otimes \operatorname{Tr}\left[\boldsymbol{Z}_{H}^{\dagger} \mathcal{H}^{\text {(bare) }} \boldsymbol{Z}_{H} \otimes \boldsymbol{Z}_{S}^{\dagger} \mathcal{S}^{\text {(bare) }} \boldsymbol{Z}_{S}\right] \\
=\mathcal{B}_{1}(\mu) \otimes \mathcal{B}_{2}(\mu) \otimes \operatorname{Tr}[\mathcal{H}(\mu) \otimes \mathcal{S}(\mu)]
\end{array} \\
& \text { separately finite } \\
& \frac{d}{d \mu} \frac{d \sigma_{F}}{d \Phi}=0 \quad \rightarrow \quad \text { Renormalization Group Equations for } \mathcal{B}, \mathcal{H} \text { and } \mathcal{S}
\end{aligned}
$$

Soft Collinear Effective Theory (SCET)

$$
\left.\mathrm{SCET} \simeq \mathrm{QCD}\right|_{\mathrm{IR} \text { limit }}
$$

- Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

Soft Collinear Effective Theory (SCET)

$$
\left.\mathrm{SCET} \simeq \mathrm{QCD}\right|_{\mathrm{IR} \text { limit }}
$$

- Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft components:

$$
\phi(x)=\phi_{c}(x)+\phi_{\bar{c}}(x)+\phi_{s}(x)
$$

Soft Collinear Effective Theory (SCET)

$$
\left.\mathrm{SCET} \simeq Q C D\right|_{\mathrm{IR} \text { limit }}
$$

- Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft components:

$$
\phi(x)=\phi_{c}(x)+\phi_{\bar{c}}(x)+\phi_{s}(x)
$$

The new fields decouple in the Lagrangian

$$
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{c}+\mathcal{L}_{\bar{c}}+\mathcal{L}_{s}
$$

- The separation of fields in the Lagrangian into collinear, anti-collinear and soft sectors, facilitates proofs of factorization theorems

Small- q_{T} factorization in SCET

Gluons' momenta in light-cone coordinates

$$
k_{i}^{\mu}=\left(k_{i}^{+}, k_{i}^{-}, \boldsymbol{k}_{i}^{\perp}\right) \quad \text { where } \quad k^{ \pm}=k^{0} \pm k^{3}
$$

Expansion parameter

$$
\lambda=\sqrt{\frac{q_{T}^{2}}{q^{2}}} \ll 1
$$

Small- q_{T} factorization in SCET

Gluons' momenta in light-cone coordinates

$$
k_{i}^{\mu}=\left(k_{i}^{+}, k_{i}^{-}, k_{i}^{\perp}\right) \quad \text { where } \quad k^{ \pm}=k^{0} \pm k^{3}
$$

Expansion parameter

$$
\lambda=\sqrt{\frac{q_{T}^{2}}{q^{2}}} \ll 1
$$

Regions

$$
\begin{array}{lll}
\text { collinear } & k_{i}^{\mu} \sim\left(1, \lambda^{2}, \lambda\right) Q^{2} & \mathcal{B}_{1} \\
\text { anti-collinear } & k_{i}^{\mu} \sim\left(\lambda^{2}, 1, \lambda\right) Q^{2} & \mathcal{B}_{2} \\
\text { hard } & k_{i}^{\mu} \sim(1,1,1) Q^{2} & \mathcal{H} \\
\text { soft } & k_{i}^{\mu} \sim(\lambda, \lambda, \lambda) Q^{2} & \mathcal{S}
\end{array}
$$

Rapidity divergences and analytic regulator

Rapidity divergences and analytic regulator

QCD

SCET

Modification of the measure [Becher, Bell '12]

$$
\int d^{d} k \delta^{+}\left(k^{2}\right) \rightarrow \int d^{d} k\left(\frac{\nu}{k_{+}}\right)^{\alpha} \delta^{+}\left(k^{2}\right)
$$

- The regulator is necessary at intermediate steps of the calculation.
- Rapidity divergences do not appear in QCD, hence, the complete SCET result has to stay finite in the limit $\alpha \rightarrow 0$.

NNLO soft function for top pair production

Soft function

- Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_{T}

Soft function

- Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_{T}

Soft function

- Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_{T}

- external momenta \rightarrow Wilson Lines along n, \bar{n}, v_{3}, v_{4} (Born kinematics)

Soft function

- Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_{T}

- external momenta \rightarrow Wilson Lines along n, \bar{n}, v_{3}, v_{4} (Born kinematics)

$$
\boldsymbol{S}_{i \bar{i}}=\sum_{n=0}^{\infty} \boldsymbol{S}_{\bar{i} \bar{i}}^{(n)}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} \quad \boldsymbol{S}_{\bar{i} \bar{i}}^{(n)}=\sum_{\{j\}} \boldsymbol{w}_{\{j\}}^{i \bar{i}} I_{\{j\}}
$$

$$
\text { colour matrices } \uparrow \quad \uparrow \underset{\text { integrals }}{\text { phase space }}
$$

Renormalization

- RG equation for the soft function

$$
\frac{d}{d \ln \mu} \boldsymbol{S}_{\bar{i}}(\mu)=-\boldsymbol{\gamma}_{\bar{i} \bar{i}}^{s \dagger} \boldsymbol{S}_{\bar{i}}(\mu)-\boldsymbol{S}_{i \bar{i}}(\mu) \boldsymbol{\gamma}_{i \bar{i}}^{s}
$$

- Soft anomalous dimension

$$
\gamma^{s}=-\boldsymbol{Z}_{s}^{-1} \frac{d \boldsymbol{Z}_{s}}{d \ln \mu}
$$

Renormalization

- RG equation for the soft function

$$
\frac{d}{d \ln \mu} \boldsymbol{S}_{\bar{i}}(\mu)=-\boldsymbol{\gamma}_{\bar{i} \bar{i}}^{s \dagger} \boldsymbol{S}_{\bar{i}}(\mu)-\boldsymbol{S}_{i \bar{i}}(\mu) \boldsymbol{\gamma}_{i \bar{i}}^{s}
$$

- Soft anomalous dimension

$$
\boldsymbol{\gamma}^{s}=-\boldsymbol{Z}_{s}^{-1} \frac{d \boldsymbol{Z}_{s}}{d \ln \mu}
$$

Specifically, at the order α_{s}^{2}, we get

Soft function at NLO

Soft function at NLO

- Known in analytic form
[Li, Li, Shao, Yan, Zhu '13; Catani, Grazzini, Torre '13]

$$
L_{\perp}=\ln \frac{x_{T}^{2} \mu^{2}}{4 e^{-2 \gamma_{E}}}
$$

$$
\boldsymbol{S}_{i \bar{i}}^{(1)}=4 L_{\perp}\left(2 \boldsymbol{w}_{i \bar{i}}^{13} \ln \frac{-t_{1}}{m_{t} M}+2 \boldsymbol{w}_{i \bar{i}}^{23} \ln \frac{-u_{1}}{m_{t} M}+\boldsymbol{w}_{i \bar{i}}^{33}\right)
$$

$$
-4\left(\boldsymbol{w}_{i \bar{i}}^{13}+\boldsymbol{w}_{i \bar{i}}^{23}\right) \operatorname{Li}_{2}\left(1-\frac{t_{1} u_{1}}{m_{t}^{2} M^{2}}\right)+4 \boldsymbol{w}_{i \bar{i}}^{33} \ln \frac{t_{1} u_{1}}{m_{t}^{2} M^{2}}
$$

$$
-2 \boldsymbol{w}_{i \bar{i}}^{34} \frac{1+\beta_{t}^{2}}{\beta_{t}}\left[L_{\perp} \ln x_{s}-\operatorname{Li}_{2}\left(-x_{s} \operatorname{tg}^{2} \frac{\theta}{2}\right)+\operatorname{Li}_{2}\left(-\frac{1}{x_{s}} \operatorname{tg}^{2} \frac{\theta}{2}\right)\right.
$$

$$
\left.+4 \ln x_{s} \ln \cos \frac{\theta}{2}\right]+\mathcal{O}(\epsilon)
$$

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble

- Single-cut

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble

- Single-cut

- Double-cut

+ ...

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble
- Single-cut

DIFFERENTIAL EQUATIONS

- Double-cut

+ ...

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble
- Single-cut

DIFFERENTIAL EQUATIONS

DIRECT INTEGRATION

- Double-cut

+ ...

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble
- Single-cut

DIFFERENTIAL EQUATIONS

DIRECT
 INTEGRATION

- Double-cut

SECTOR DECOMPOSITION

Double-cut NNLO integrals

Example:

$$
\tilde{I}_{3 g v, i j}=\int \frac{d^{d} k_{1} d^{d} k_{2} \delta^{+}\left(k_{1}^{2}\right) \delta^{+}\left(k_{2}^{2}\right) \delta\left(\left(k_{1}+k_{2}\right)_{T}^{2}-q_{T}^{2}\right)}{\left(n \cdot k_{1}\right)^{\alpha}\left(n \cdot k_{2}\right)^{\alpha}\left(n_{i} \cdot k_{1}\right)\left(n_{j} \cdot\left(k_{1}+k_{2}\right)\right)\left(k_{1}+k_{2}\right)^{2}}
$$

Double-cut NNLO integrals

Example:

$$
\tilde{I}_{3 g v, i j}=\int \frac{d^{d} k_{1} d^{d} k_{2} \delta^{+}\left(k_{1}^{2}\right) \delta^{+}\left(k_{2}^{2}\right) \delta\left(\left(k_{1}+k_{2}\right)_{T}^{2}-q_{T}^{2}\right)}{\left(n \cdot k_{1}\right)^{\alpha}\left(n \cdot k_{2}\right)^{\alpha}\left(n_{i} \cdot k_{1}\right)\left(n_{j} \cdot\left(k_{1}+k_{2}\right)\right)\left(k_{1}+k_{2}\right)^{2}}
$$

- divergent in the limits $\epsilon \rightarrow 0$ and $\alpha \rightarrow 0$
- a range of overlapping singularities
- complication introduced by $\delta\left(\left(k_{1}+k_{2}\right)_{T}^{2}-q_{T}^{2}\right)$ which additionally couples gluon's momenta

Double-cut NNLO integrals

Example:

$$
\tilde{I}_{3 g v, i j}=\int \frac{d^{d} k_{1} d^{d} k_{2} \delta^{+}\left(k_{1}^{2}\right) \delta^{+}\left(k_{2}^{2}\right) \delta\left(\left(k_{1}+k_{2}\right)_{T}^{2}-q_{T}^{2}\right)}{\left(n \cdot k_{1}\right)^{\alpha}\left(n \cdot k_{2}\right)^{\alpha}\left(n_{i} \cdot k_{1}\right)\left(n_{j} \cdot\left(k_{1}+k_{2}\right)\right)\left(k_{1}+k_{2}\right)^{2}}
$$

- divergent in the limits $\epsilon \rightarrow 0$ and $\alpha \rightarrow 0$
- a range of overlapping singularities
- complication introduced by $\delta\left(\left(k_{1}+k_{2}\right)_{T}^{2}-q_{T}^{2}\right)$ which additionally couples gluon's momenta

To disentangle overlapping singularities and calculate regularized integrals we use the method of sector decomposition [Binoth, Heinrich, '00; Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke '17].

Sector decomposition

$$
\int_{0}^{1} d x d y \frac{\mathcal{W}(x, y)}{(x+y)^{2+\epsilon}}
$$

Sector decomposition

$$
\int_{0}^{1} d x d y \frac{\mathcal{W}(x, y)}{(x+y)^{2+\epsilon}}=\int_{0}^{1} d x d y \frac{\mathcal{W}(x, y)}{(x+y)^{2+\epsilon}}[\overbrace{\Theta(x-y)}^{(1)}+\overbrace{\Theta(y-x)}^{(2)}]
$$

Sector decomposition

$$
\int_{0}^{1} d x d y \frac{\mathcal{W}(x, y)}{(x+y)^{2+\epsilon}}=\int_{0}^{1} d x d y \frac{\mathcal{W}(x, y)}{(x+y)^{2+\epsilon}}[\overbrace{\Theta(x-y)}^{(1)}+\overbrace{\Theta(y-x)}^{(2)}]
$$

(1) $y=x t$
(2) $x=y t$

Sector decomposition

$$
\begin{aligned}
& \int_{0}^{1} d x d y \frac{\mathcal{W}(x, y)}{(x+y)^{2+\epsilon}}=\int_{0}^{1} d x d y \frac{\mathcal{W}(x, y)}{(x+y)^{2+\epsilon}}[\overbrace{\Theta(x-y)}^{(1)}+\overbrace{\Theta(y-x)}^{(2)}] \\
& \text { (1) } y=x t \\
& \text { (2) } x=y t \\
& =\int_{0}^{1} d x d t \frac{\mathcal{W}(x, t x)}{(1+t)^{2+\epsilon} x^{1+\epsilon}}+\int_{0}^{1} d t d y \frac{\mathcal{W}(t y, y)}{(1+t)^{2+\epsilon} y^{1+\epsilon}}
\end{aligned}
$$

Sector decomposition

$$
\begin{aligned}
& \int_{0}^{1} d x d y \frac{\mathcal{W}(x, y)}{(x+y)^{2+\epsilon}}=\int_{0}^{1} d x d y \frac{\mathcal{W}(x, y)}{(x+y)^{2+\epsilon}}[\overbrace{\Theta(x-y)}^{(1)}+\overbrace{\Theta(y-x)}^{(2)}] \\
& \text { (1) } y=x t \quad \text { (2) } \quad x=y t \\
& =\int_{0}^{1} d x d t \frac{\mathcal{W}(x, t x)}{(1+t)^{2+\epsilon} x^{1+\epsilon}}+\int_{0}^{1} d t d y \frac{\mathcal{W}(t y, y)}{(1+t)^{2+\epsilon} y^{1+\epsilon}}
\end{aligned}
$$

Sector decomposition

In general, each integral can be expressed as

$$
\mathcal{I}=\sum_{i \in \text { sectors }} \int_{0}^{1} \frac{d x_{1}}{x_{1}^{1+a_{1} \epsilon}} \frac{d x_{2}}{x_{2}^{1+a_{2} \epsilon}} \cdots \frac{d x_{n}}{x_{n}^{1+a_{n} \epsilon}} \mathcal{W}_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Sector decomposition

In general, each integral can be expressed as

$$
\mathcal{I}=\sum_{i \in \text { sectors }} \int_{0}^{1} \frac{d x_{1}}{x_{1}^{1+a_{1} \epsilon}} \frac{d x_{2}}{x_{2}^{1+\alpha_{2} \epsilon}} \cdots \frac{d x_{n}}{x_{n}^{1+a_{n} \epsilon}} \mathcal{W}_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

and then we use

$$
\frac{1}{x_{i}^{1+a_{i} \epsilon}}=-\frac{1}{a_{i} \epsilon} \delta\left(x_{i}\right)+\sum_{n=0}^{\infty} \frac{a_{i}^{n} \epsilon^{n}}{n!}\left[\frac{\log ^{n}\left(x_{i}\right)}{x_{i}}\right]_{+}
$$

Sector decomposition

In general, each integral can be expressed as

$$
\mathcal{I}=\sum_{i \in \text { sectors }} \int_{0}^{1} \frac{d x_{1}}{x_{1}^{1+a_{1} \epsilon}} \frac{d x_{2}}{x_{2}^{1+a_{2} \epsilon}} \cdots \frac{d x_{n}}{x_{n}^{1+a_{n} \epsilon}} \mathcal{W}_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

and then we use

$$
\frac{1}{x_{i}^{1+a_{i} \epsilon}}=-\frac{1}{a_{i} \epsilon} \delta\left(x_{i}\right)+\sum_{n=0}^{\infty} \frac{a_{i}^{n} \epsilon^{n}}{n!}\left[\frac{\log ^{n}\left(x_{i}\right)}{x_{i}}\right]_{+}
$$

with the + prescription defined as

$$
\int_{0}^{1} d x g(x)_{+} f(x)=\int_{0}^{1} d x g(x)(f(x)-f(0))
$$

Sector decomposition

In general, each integral can be expressed as

$$
\mathcal{I}=\sum_{i \in \text { sectors }} \int_{0}^{1} \frac{d x_{1}}{x_{1}^{1+a_{1} \epsilon}} \frac{d x_{2}}{x_{2}^{1+a_{2} \epsilon}} \cdots \frac{d x_{n}}{x_{n}^{1+a_{n} \epsilon}} \mathcal{W}_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

and then we use

$$
\frac{1}{x_{i}^{1+a_{i} \epsilon}}=-\frac{1}{a_{i} \epsilon} \delta\left(x_{i}\right)+\sum_{n=0}^{\infty} \frac{a_{i}^{n} \epsilon^{n}}{n!}\left[\frac{\log ^{n}\left(x_{i}\right)}{x_{i}}\right]_{+}
$$

with the + prescription defined as

$$
\int_{0}^{1} d x g(x)_{+} f(x)=\int_{0}^{1} d x g(x)(f(x)-f(0))
$$

After the above procedure is performed, all divergences become explicit and are turned in to ϵ poles

$$
\mathcal{I}_{i}=\sum_{n} \underbrace{\left(\int \mathcal{W}_{i n}\right)}_{\text {finite }} \times \epsilon^{n}
$$

Sector decomposition

Two types of singularities

- Endpoint, e.g. soft:

$$
\left(k_{1}^{+}, k_{1}^{-}, k_{1}^{\perp}\right) \rightarrow 0
$$

Sector decomposition

Two types of singularities

- Endpoint, e.g. soft:

$$
\left(k_{1}^{+}, k_{1}^{-}, k_{1}^{\perp}\right) \rightarrow 0
$$

- Manifold, e.g. collinear

$$
k_{1} \cdot k_{2} \rightarrow 0
$$

Single-cut (real-virtual)

Single-cut (real-virtual)

$$
S_{1-\mathrm{cut}}^{(2)}=\sum_{i j k} \int d^{d} I \frac{\delta^{+}\left(I^{2}\right) \delta\left(I_{T}-q_{T}\right)}{I_{+}^{\alpha} n_{k} \cdot I} n_{k}^{\mu} T_{k}^{a} J_{i j, a}^{\mu}(I)
$$

Single-cut (real-virtual)

$$
S_{1-\mathrm{cut}}^{(2)}=\sum_{i j k} \int d^{d} I^{\delta^{+}\left(I^{2}\right) \delta\left(I_{T}-q_{T}\right)} I_{+}^{\alpha} n_{k} \cdot I \quad n_{k}^{\mu} T_{k}^{\mu} J_{i, a}^{\mu}(I)
$$

- The soft current $J_{i j, a}^{\mu}(I)$ is known up to NLO [Catani, Grazzini '00; Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].

Single-cut (real-virtual)

$$
S_{1-\mathrm{cut}}^{(2)}=\sum_{i j k} \int d^{d} I \frac{\delta^{+}\left(I^{2}\right) \delta\left(I_{T}-q_{T}\right)}{I_{+}^{\alpha} n_{k} \cdot I} n_{k}^{\mu} T_{k}^{a} J_{i j, a}^{\mu}(I)
$$

- The soft current $J_{i j, a}^{\mu}(I)$ is known up to NLO [Catani, Grazzini '00; Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].
- $S_{1 \text {-cut }}^{(2)}$ can be obtained by a relatively simple integration over I^{μ}.

Single-cut (real-virtual)

$$
S_{1-\mathrm{cut}}^{(2)}=\sum_{i j k} \int d^{d} I \frac{\delta^{+}\left(I^{2}\right) \delta\left(I_{T}-q_{T}\right)}{I_{+}^{\alpha} n_{k} \cdot I} n_{k}^{\mu} T_{k}^{a} J_{i j, a}^{\mu}(I)
$$

- The soft current $J_{i j, a}^{\mu}(I)$ is known up to NLO [Catani, Grazzini '00; Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].
- $S_{1 \text {-cut }}^{(2)}$ can be obtained by a relatively simple integration over I^{μ}.
- Single-cut piece of the soft function exhibits both real and imaginary part. The latter when $i \neq j \neq k$, the former, otherwise.

Bubble

Bubble

- Solvable analytically: direct cross check of our sector decompositionbased implementation
- Non-trivial tensor structure \rightarrow challenging numerators
- Laboratory to stress-test sector decomposition-based methodology
- Comparable with n_{f} part of Renormalization Group prediction

Complete Soft Function at NNLO: structure of the result

- In momentum space

$$
S^{(2, \text { bare })}\left(q_{T}, \beta_{t}, \theta\right)=\frac{1}{q_{T}^{p}}\left[S_{\text {bubble }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{1 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{2 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)\right]
$$

Complete Soft Function at NNLO: structure of the result

- In momentum space

$$
S^{(2, \text { bare })}\left(q_{T}, \beta_{t}, \theta\right)=\frac{1}{q_{T}^{p}}\left[S_{\text {bubble }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{1 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{2 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)\right]
$$

- In position space $\|$ Fourier Transform

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta_{t}, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{1-\text { cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{2 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)\right]
\end{aligned}
$$

Complete Soft Function at NNLO: structure of the result

- In momentum space

$$
S^{(2, \text { bare })}\left(q_{T}, \beta_{t}, \theta\right)=\frac{1}{q_{T}^{p}}\left[S_{\text {bubble }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{1-\text { cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{2 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)\right]
$$

$\left.\begin{array}{rl} & \left(\begin{array}{l}\text { Fourier Transform } \\ S^{(2, \text { bare })}\left(L_{\perp}, \beta_{t}, \theta\right)=\end{array}\right. \\ & \times\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right]\end{array}\right)$
\hookrightarrow Momentum-space soft function has to be calculated up to order ϵ.

Complete Soft Function at NNLO: structure of the result

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta_{t}, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{1-\text { cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{2 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)\right]
\end{aligned}
$$

Complete Soft Function at NNLO: structure of the result

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta_{t}, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{1-\text { cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{2 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)\right] \\
= & \frac{1}{\epsilon^{2}} S^{(2,-2)}\left(L_{\perp}\right)+\frac{1}{\epsilon} S^{(2,-1)}\left(L_{\perp}\right)+S^{(2,0)}\left(L_{\perp}\right)
\end{aligned}
$$

Complete Soft Function at NNLO: structure of the result

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta_{t}, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{1-\text { cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{2 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)\right] \\
= & \frac{1}{\epsilon^{2}} S^{(2,-2)}\left(L_{\perp}\right)+\frac{1}{\epsilon} S^{(2,-1)}\left(L_{\perp}\right)+S^{(2,0)}\left(L_{\perp}\right)
\end{aligned}
$$

can be cross-checked against RG; fixes all L_{\perp}-dependent terms in $S^{(2,0)}\left(L_{\perp}\right)$

Complete Soft Function at NNLO: structure of the result

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta_{t}, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{1-\text { cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{2 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)\right] \\
= & \frac{1}{\epsilon^{2}} S^{(2,-2)}\left(L_{\perp}\right)+\frac{1}{\epsilon} S^{(2,-1)}\left(L_{\perp}\right)+S^{(2,0)}\left(L_{\perp}\right)
\end{aligned}
$$

can be cross-checked against RG; fixes all L_{\perp}-dependent terms in $S^{(2,0)}\left(L_{\perp}\right)$

- The only term that has to be obtained through direct calculation is the L_{\perp}-independent part of $S^{(2,0)}\left(L_{\perp}\right)$.

Complete Soft Function at NNLO: structure of the result

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta_{t}, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{1-\text { cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)+S_{2 \text {-cut }}^{(2)}\left(\beta_{t}, \theta, \epsilon\right)\right] \\
= & \frac{1}{\epsilon^{2}} S^{(2,-2)}\left(L_{\perp}\right)+\frac{1}{\epsilon} S^{(2,-1)}\left(L_{\perp}\right)+S^{(2,0)}\left(L_{\perp}\right)
\end{aligned}
$$

can be cross-checked against RG ; fixes all L_{\perp}-dependent terms in $S^{(2,0)}\left(L_{\perp}\right)$

- The only term that has to be obtained through direct calculation is the L_{\perp}-independent part of $S^{(2,0)}\left(L_{\perp}\right)$.
- However, we calculate all terms and use the redundant ones for cross checks against Renormalization Group prediction.

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^{2}}$ singularity, higher order poles appear in individual contributions.

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^{2}}$ singularity, higher order poles appear in individual contributions.

- All α poles, including $\frac{\epsilon}{\alpha}$, as well as $\frac{1}{\epsilon^{4}}$ pole cancel within each colour structure, for example

$$
\frac{1}{\epsilon^{4}}\left(\begin{array}{cc}
0.00009 N_{c}^{-1}-0.00009 N_{c} & -0.00002 N_{c}^{2}-0.00009 N_{c}^{-2}+0.0001 \\
-0.00002 N_{c}^{2}-0.00009 N_{c}^{-2}+0.0001 & 0.00008 N_{c}^{3}-0.00006 N_{c}+0.00007 N_{c}^{-3}-0.00009 N_{c}^{-1}
\end{array}\right)
$$

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^{2}}$ singularity, higher order poles appear in individual contributions.

- All α poles, including $\frac{\epsilon}{\alpha}$, as well as $\frac{1}{\epsilon^{4}}$ pole cancel within each colour structure, for example

$$
\frac{1}{\epsilon^{4}}\left(\begin{array}{cc}
0.00009 N_{c}^{-1}-0.00009 N_{c} & -0.00002 N_{c}^{2}-0.00009 N_{c}^{-2}+0.0001 \\
-0.00002 N_{c}^{2}-0.00009 N_{c}^{-2}+0.0001 & 0.00008 N_{c}^{3}-0.00006 N_{c}+0.00007 N_{c}^{-3}-0.00009 N_{c}^{-1}
\end{array}\right)
$$

$-\frac{1}{\epsilon^{3}}$ pole cancels between 1 -cut and 2-cut contributions

$$
\frac{1}{\epsilon^{3}}\left(\begin{array}{cc}
0.0004 N_{c}^{3}-0.0007 N_{c}+0.0004 N_{c}^{-1} & 0.0004 N_{c}^{2}-0.0004 N_{c}^{-2}-7 . \times 10^{-6} \\
0.0004 N_{c}^{2}-0.0004 N_{c}^{-2}-7 . \times 10^{-6} & -0.0004 N_{c}^{3}-0.00001 N_{c}+0.0003 N_{c}^{-3}+0.0002 N_{c}^{-1}
\end{array}\right)
$$

[^0]
Quark bubble contribution

Validation of the framework

- Perfect agreement of the quark bubble results obtained from differential equations and sector decomposition for all terms in ϵ expansion
- Reproduction of the n_{f} part of the Renormalization Group result

Imaginary part

($q \bar{q}$ channel)

(gg channel)

Real part

Real part

$\mathrm{N}^{3} \mathrm{LO}$ beam function

> (work in progress)

The beam function

- Represents corrections coming from emissions of real, collinear gluons, whose transverse momenta sum up to a fixed value q_{T} and whose longitudinal component along p sums up to $1-z$

$$
\begin{aligned}
& B_{\text {bare }}\left(q_{T}, z\right) \propto \sum \\
& \\
& \times \delta\left(q_{T}-\left|\sum_{i} k_{i \perp}\right|\right) \prod_{i} \delta^{+}\left(k_{i}^{2}\right) \delta\left(\bar{n} \cdot \sum k_{i}-(1-z) \bar{n} \cdot p\right) \\
& p=\frac{\bar{n} \cdot p}{2} n \\
& n^{2}=\bar{n}^{2}=0 \\
& n \cdot \bar{n}=2
\end{aligned}
$$

NNLO beam function

- Known analytically [Gehrmann, Lübbert, Yang '12, '14].
- We checked that our method reproduces that result

$\mathrm{N}^{3} \mathrm{LO}$ propagators

light-cone	internal only
$n \cdot I_{1}$	$I_{1} \cdot I_{2}$
$n \cdot I_{2}$	$I_{1} \cdot I_{3}$
$n \cdot I_{3}$	$I_{2} \cdot I_{3}$
$\bar{n} \cdot I_{1}$	$I_{1} \cdot I_{2}+I_{1} \cdot I_{3}+I_{2} \cdot I_{3}$
$\bar{n} \cdot I_{2}$	
$\bar{n} \cdot I_{3}$	internal+external
$n \cdot I_{1}+n \cdot I_{2}$	$p_{-} n \cdot I_{1}$
$n \cdot I_{1}+n \cdot I_{3}$	$p_{-} n \cdot I_{2}$
$n \cdot I_{2}+n \cdot I_{3}$	$p_{-} n \cdot I_{3}$
$\bar{n} \cdot I_{1}+\bar{n} \cdot I_{2}$	$I_{1} \cdot I_{2}-p_{-} n \cdot I_{1}-p_{-} n \cdot I_{2}$
$\bar{n} \cdot I_{1}+\bar{n} \cdot I_{3}$	$I_{1} \cdot I_{3}-p_{-} n \cdot I_{1}-p_{-} n \cdot I_{3}$
$\bar{n} \cdot I_{2}+\bar{n} \cdot I_{3}$	$I_{2} \cdot I_{3}-p_{-} n \cdot I_{2}-p_{-} n \cdot I_{3}$

light-cone
$n \cdot I_{1}$
$n \cdot I_{2}$
$n \cdot l_{3}$
$\bar{n} \cdot l_{1}$
$\bar{n} \cdot l_{2}$
$\bar{n} \cdot l_{3}$
$n \cdot l_{1}+n \cdot l_{2}$
$n \cdot l_{1}+n \cdot l_{3}$
$n \cdot l_{2}+n \cdot I_{3}$
$\bar{n} \cdot l_{1}+\bar{n} \cdot l_{2}$
$\bar{n} \cdot l_{1}+\bar{n} \cdot l_{3}$
$\bar{n} \cdot l_{2}+\bar{n} \cdot l_{3}$
internal only
$I_{1} \cdot I_{2}$
$l_{1} \cdot I_{3}$
$I_{2} \cdot I_{3}$
$I_{1} \cdot I_{2}+I_{1} \cdot I_{3}+I_{2} \cdot I_{3}$
internal+external

$$
p_{-} n \cdot l_{1}
$$

$$
p_{-} n \cdot l_{2}
$$

$$
p_{-} n \cdot l_{3}
$$

$$
l_{1} \cdot I_{2}-p_{-} n \cdot l_{1}-p_{-} n \cdot I_{2}
$$

$$
l_{1} \cdot l_{3}-p_{-} n \cdot l_{1}-p_{-} n \cdot l_{3}
$$

$$
I_{2} \cdot l_{3}-p_{-} n \cdot l_{2}-p_{-} n \cdot l_{3}
$$

The way to go

The beam function

$$
B_{\text {bare }}\left(z, q_{T}\right)=\sum_{i} \mathcal{I}_{i}
$$

can be calculated if each integral is represented as

$$
\mathcal{I}_{i}=\sum_{j \in \text { sectors }} \int_{0}^{1} \frac{d x_{1}}{x_{1}^{1+a_{1} \epsilon}} \frac{d x_{2}}{x_{2}^{1+a_{2} \epsilon}} \frac{d x_{3}}{x_{3}^{1+a_{3} \epsilon}} \frac{d x_{4}}{x_{4}^{1+a_{4} \epsilon}} d x_{5} \cdots d x_{9} \mathcal{W}_{j}\left(x_{1}, x_{2}, \ldots, x_{9}\right)
$$

The way to go

The beam function

$$
B_{\mathrm{bare}}\left(z, q_{T}\right)=\sum_{i} \mathcal{I}_{i}
$$

can be calculated if each integral is represented as

$$
\mathcal{I}_{i}=\sum_{j \in \text { sectors }} \int_{0}^{1} \frac{d x_{1}}{x_{1}^{1+a_{1} \epsilon}} \frac{d x_{2}}{x_{2}^{1+a_{2} \epsilon}} \frac{d x_{3}}{x_{3}^{1+a_{3} \epsilon}} \frac{d x_{4}}{x_{4}^{1+a_{4} \epsilon}} d x_{5} \cdots d x_{9} \mathcal{W}_{j}\left(x_{1}, x_{2}, \ldots, x_{9}\right) .
$$

Then we can use

$$
\frac{1}{x_{i}^{1+a_{i} \epsilon}}=-\frac{1}{a_{i} \epsilon} \delta\left(x_{i}\right)+\sum_{n=0}^{\infty} \frac{a_{i}^{n} \epsilon^{n}}{n!}\left[\frac{\log ^{n}\left(x_{i}\right)}{x_{i}}\right]_{+} .
$$

$\mathrm{N}^{3} \mathrm{LO}$ propagators

The first problem: It is impossible to parameterize the momenta such that all scalar products look simple simultaneously.

$\mathrm{N}^{3} \mathrm{LO}$ propagators

The first problem: It is impossible to parameterize the momenta such that all scalar products look simple simultaneously.

Example

$n=[1,0,0,0,1] \quad \bar{n}=[1,0,0,0,-1] \quad I_{1}=\left[\frac{l_{1-}^{2}+l_{1 T}^{2}}{2 I_{1-}}, 0,0,0, \frac{l_{1-}^{2}-l_{1 T}^{2}}{2 I_{1-}}\right]$
$I_{3}=\left[\frac{I_{3-}^{2}+I_{3 T}^{2}}{2 I_{3-}}, 0, I_{3 T} \sin \chi_{1}, I_{3 T} \cos \chi_{1}, \frac{I_{3-}^{2}-I_{3 T}^{2}}{2 I_{3-}}\right]$
$I_{2}=\left[\frac{I_{2-}^{2}+I_{2+}^{2}}{2 I_{2-}^{2}}, I_{2 T} \sin \phi_{1} \sin \phi_{2}, I_{2 T} \cos \phi_{2} \sin \phi_{1}, I_{2 T} \cos \phi_{1}, \frac{I_{2-}^{2}-I_{2+}^{2}}{2 I_{2-}}\right]$

$\mathrm{N}^{3} \mathrm{LO}$ propagators

The first problem: It is impossible to parameterize the momenta such that all scalar products look simple simultaneously.

Example

$$
\begin{aligned}
& n=[1,0,0,0,1] \quad \bar{n}=[1,0,0,0,-1] \quad I_{1}=\left[\frac{l_{1-}^{2}+I_{1 T}^{2}}{2 I_{1-}}, 0,0,0, \frac{l_{1-}^{2}-I_{1 T}^{2}}{2 I_{1-}}\right] \\
& I_{3}=\left[\frac{l_{3-}^{2}+I_{3 T}^{2}}{2 I_{3-}}, 0, I_{3 T} \sin \chi_{1}, I_{3 T} \cos \chi_{1}, \frac{l_{3-}^{2}-l_{3 T}^{2}}{2 I_{3-}}\right] \\
& I_{2}=\left[\frac{l_{2-}^{2}+I_{2-}^{2}}{2 I_{2-}^{2}}, I_{2 T} \sin \phi_{1} \sin \phi_{2}, I_{2 T} \cos \phi_{2} \sin \phi_{1}, I_{2 T} \cos \phi_{1}, \frac{l_{2-}^{2}-I_{2+}^{2}}{2 I_{2-}}\right] \\
& \bar{n} \cdot I_{1}=I_{1-} \quad \bar{n} \cdot I_{2}=I_{2-} \quad \bar{n} \cdot I_{3}=I_{3-} \\
& I_{1} \cdot I_{2}=\frac{l_{1}^{2} T I_{2-}}{2 I_{1-}}+\frac{l_{2 T}^{2} I_{1-}}{2 I_{2-}}-I_{1 T} I_{2 T} \cos \phi_{1}
\end{aligned}
$$

$\mathrm{N}^{3} \mathrm{LO}$ propagators

The first problem: It is impossible to parameterize the momenta such that all scalar products look simple simultaneously.

Example

$$
\begin{aligned}
& n=[1,0,0,0,1] \quad \bar{n}=[1,0,0,0,-1] \quad I_{1}=\left[\frac{I_{1-}^{2}+I_{1 T}^{2}}{2 I_{1-}}, 0,0,0, \frac{l_{1-}^{2}-I_{1}^{2}}{2 I_{1-}}\right. \\
& I_{3}=\left[\frac{I_{3-}^{2}+I_{3 T}^{2}}{2 I_{3-}}, 0, I_{3} T \sin \chi_{1}, I_{3} T \cos \chi_{1}, \frac{l_{3-}^{2}-I_{3 T}^{2}}{2 I_{3-}}\right] \\
& I_{2}=\left[\frac{I_{2-}^{2}+I_{2+}^{2}}{2 I_{2-}^{2}}, I_{2 T} \sin \phi_{1} \sin \phi_{2}, I_{2 T} \cos \phi_{2} \sin \phi_{1}, I_{2 T} \cos \phi_{1}, \frac{I_{2-}^{2}-I_{2+}^{2}}{2 I_{2-}}\right]
\end{aligned}
$$

$$
\bar{n} \cdot l_{1}=l_{1-} \quad \bar{n} \cdot l_{2}=l_{2-} \quad \bar{n} \cdot l_{3}=l_{3-}
$$

$$
I_{1} \cdot I_{2}=\frac{I_{1 T}^{2} l_{2-}}{2 I_{1-}}+\frac{I_{2 T}^{2} l_{1-}}{2 I_{2-}}-I_{1 T} l_{2 T} \cos \phi_{1} \quad \Rightarrow \quad \phi_{1}=0 \& \frac{I_{1 T}}{l_{1-}}=\frac{I_{2 T}}{l_{2-}}
$$

$\mathrm{N}^{3} \mathrm{LO}$ propagators

The first problem:
It is impossible to parameterize the momenta such that all scalar products look simple simultaneously.

Example

$$
\begin{aligned}
& n=[1,0,0,0,1] \quad \bar{n}=[1,0,0,0,-1] \quad I_{1}=\left[\frac{I_{1-}^{2}+I_{1 T}^{2}}{2 I_{1-}}, 0,0,0, \frac{l_{1-}^{2}-I_{1}^{2}}{2 I_{1-}}\right. \\
& I_{3}=\left[\frac{I_{3-}^{2}+I_{3}^{2}}{2 I_{3-}}, 0, I_{3} T \sin \chi_{1}, I_{3} T \cos \chi_{1}, \frac{l_{3-}^{2}-I_{3 T}^{2}}{2 I_{3-}}\right] \\
& I_{2}=\left[\frac{l_{2-}^{2}+I_{2+}^{2}}{2 I_{2-}^{2}}, I_{2 T} \sin \phi_{1} \sin \phi_{2}, I_{2 T} \cos \phi_{2} \sin \phi_{1}, I_{2 T} \cos \phi_{1}, \frac{I_{2-}^{2}-I_{2+}^{2}}{2 I_{2-}}\right]
\end{aligned}
$$

$$
\bar{n} \cdot l_{1}=l_{1-} \quad \bar{n} \cdot l_{2}=l_{2-} \quad \bar{n} \cdot l_{3}=l_{3-}
$$

$$
I_{1} \cdot I_{2}=\frac{I_{1 T}^{2} I_{2-}}{2 I_{1-}}+\frac{I_{2 T}^{2} I_{1-}}{2 I_{2-}}-I_{1 T} I_{2 T} \cos \phi_{1} \quad \Rightarrow \quad \phi_{1}=0 \& \frac{I_{1 T}}{I_{1-}}=\frac{I_{2 T}}{I_{2-}}
$$

$$
I_{2} \cdot I_{3}=\frac{I_{2}^{2} I_{3-}}{2 I_{2-}}+\frac{I_{3}^{2} I_{2-}}{2 I_{3-}}-I_{2 T} I_{3} T \cos \chi_{1} \cos \phi_{1}-I_{2 T} I_{3} T \cos \phi_{2} \sin \chi_{1} \sin \phi_{1}
$$

Step 1: selector functions

7 triple collinear

$\left(I_{1} \cdot I_{2}\right)\left(n \cdot I_{1}\right)\left(n \cdot I_{2}\right)$
$\left(I_{1} \cdot I_{3}\right)\left(n \cdot I_{1}\right)\left(n \cdot I_{3}\right)$
$\left(I_{2} \cdot I_{3}\right)\left(n \cdot I_{2}\right)\left(n \cdot I_{3}\right)$
$\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{2}\right)$
$\left(I_{1} \cdot I_{3}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{3}\right)$
$\left(I_{2} \cdot I_{3}\right)\left(\bar{n} \cdot I_{2}\right)\left(\bar{n} \cdot I_{3}\right)$
$\left(I_{1} \cdot I_{2}\right)\left(I_{1} \cdot I_{3}\right)\left(I_{2} \cdot I_{3}\right)$

12 double collinear

$\left(n \cdot I_{1}\right)\left(\bar{n} \cdot I_{2}\right)$	$\left(I_{1} \cdot I_{3}\right)\left(n \cdot I_{2}\right)$
$\left(n \cdot I_{1}\right)\left(\bar{n} \cdot I_{3}\right)$	$\left(I_{2} \cdot I_{3}\right)\left(n \cdot I_{1}\right)$
$\left(n \cdot I_{2}\right)\left(\bar{n} \cdot I_{3}\right)$	$\left(I_{1} \cdot I_{2}\right)\left(n \cdot I_{3}\right)$
$\left(\bar{n} \cdot I_{1}\right)\left(n \cdot I_{2}\right)$	$\left(I_{1} \cdot I_{3}\right)\left(\bar{n} \cdot I_{2}\right)$
$\left(\bar{n} \cdot I_{1}\right)\left(n \cdot I_{3}\right)$	$\left(I_{2} \cdot I_{3}\right)\left(\bar{n} \cdot I_{1}\right)$
$\left(\bar{n} \cdot I_{2}\right)\left(n \cdot I_{3}\right)$	$\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{3}\right)$

Step 1: selector functions

7 triple collinear

$\left(I_{1} \cdot I_{2}\right)\left(n \cdot I_{1}\right)\left(n \cdot I_{2}\right)$
$\left(I_{1} \cdot I_{3}\right)\left(n \cdot I_{1}\right)\left(n \cdot I_{3}\right)$
$\left(I_{2} \cdot I_{3}\right)\left(n \cdot I_{2}\right)\left(n \cdot I_{3}\right)$
$\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{2}\right)$
$\left(I_{1} \cdot I_{3}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{3}\right)$
$\left(I_{2} \cdot I_{3}\right)\left(\bar{n} \cdot I_{2}\right)\left(\bar{n} \cdot I_{3}\right)$
$\left(I_{1} \cdot I_{2}\right)\left(I_{1} \cdot I_{3}\right)\left(I_{2} \cdot I_{3}\right)$

$$
S_{1,2 ; 2}=\frac{1}{d_{1,2 ; 1} \mathcal{D}}
$$

12 double collinear

$\left(n \cdot l_{1}\right)\left(\bar{n} \cdot l_{2}\right)$	$\left(I_{1} \cdot I_{3}\right)\left(n \cdot I_{2}\right)$
$\left(n \cdot l_{1}\right)\left(\bar{n} \cdot l_{3}\right)$	$\left(l_{2} \cdot l_{3}\right)\left(n \cdot l_{1}\right)$
$\left(n \cdot l_{2}\right)\left(\bar{n} \cdot l_{3}\right)$	$\left(l_{1} \cdot l_{2}\right)\left(n \cdot l_{3}\right)$
$\left(\bar{n} \cdot l_{1}\right)\left(n \cdot l_{2}\right)$	$\left(l_{1} \cdot l_{3}\right)\left(\bar{n} \cdot l_{2}\right)$
$\left(\bar{n} \cdot I_{1}\right)\left(n \cdot l_{3}\right)$	$\left(I_{2} \cdot l_{3}\right)\left(\bar{n} \cdot I_{1}\right)$
$\left(\bar{n} \cdot I_{2}\right)\left(n \cdot I_{3}\right)$	$\left(l_{1} \cdot l_{2}\right)\left(\bar{n} \cdot l_{3}\right)$

$$
\begin{aligned}
& d_{1,2 ; 1}=\left(l_{1} \cdot l_{2}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{2}\right), \\
& \mathcal{D}=\sum_{i, j, k} \frac{1}{d_{i, j ; k}}+\sum_{i, j, k, l} \frac{1}{d_{i, j ; k, l}},
\end{aligned}
$$

Step 1: selector functions

7 triple collinear

$\left(I_{1} \cdot I_{2}\right)\left(n \cdot I_{1}\right)\left(n \cdot I_{2}\right)$
$\left(I_{1} \cdot I_{3}\right)\left(n \cdot I_{1}\right)\left(n \cdot I_{3}\right)$
$\left(I_{2} \cdot I_{3}\right)\left(n \cdot I_{2}\right)\left(n \cdot I_{3}\right)$
$\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{2}\right)$
$\left(I_{1} \cdot I_{3}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{3}\right)$
$\left(I_{2} \cdot I_{3}\right)\left(\bar{n} \cdot I_{2}\right)\left(\bar{n} \cdot I_{3}\right)$
$\left(I_{1} \cdot I_{2}\right)\left(I_{1} \cdot I_{3}\right)\left(I_{2} \cdot I_{3}\right)$

$S_{1,2 ; 2}=\frac{1}{d_{1,2 ; 1} \mathcal{D}}$,

12 double collinear

$\left(n \cdot I_{1}\right)\left(\bar{n} \cdot I_{2}\right)$	$\left(I_{1} \cdot I_{3}\right)\left(n \cdot I_{2}\right)$
$\left(n \cdot I_{1}\right)\left(\bar{n} \cdot I_{3}\right)$	$\left(I_{2} \cdot I_{3}\right)\left(n \cdot I_{1}\right)$
$\left(n \cdot I_{2}\right)\left(\bar{n} \cdot I_{3}\right)$	$\left(I_{1} \cdot I_{2}\right)\left(n \cdot I_{3}\right)$
$\left(\bar{n} \cdot I_{1}\right)\left(n \cdot I_{2}\right)$	$\left(I_{1} \cdot I_{3}\right)\left(\bar{n} \cdot I_{2}\right)$
$\left(\bar{n} \cdot I_{1}\right)\left(n \cdot I_{3}\right)$	$\left(I_{2} \cdot I_{3}\right)\left(\bar{n} \cdot I_{1}\right)$
$\left(\bar{n} \cdot I_{2}\right)\left(n \cdot I_{3}\right)$	$\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{3}\right)$

$$
d_{1,2 ; 1}=\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{2}\right),
$$

$$
\mathcal{D}=\sum_{i, j, k} \frac{1}{d_{i, j ; k}}+\sum_{i, j, k, l} \frac{1}{d_{i, j ; k, l}},
$$

$$
S_{1,2 ; 2}=\frac{1}{1+\frac{\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{2}\right)}{\left(I_{1} \cdot I_{3}\right)\left(\bar{n} \cdot I_{3}\right)}+\frac{\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{1}\right)}{\left(I_{1} \cdot I_{3}\right)}+\cdots},
$$

Step 2: sector decomposition

Let's focus on the sector $\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{2}\right)$. All other singularities are suppressed by the corresponding selector functions.

In this sector, divergencies can be generated by the following propagators:

$$
\begin{gathered}
\bar{n} \cdot l_{1} \\
\bar{n} \cdot l_{2} \\
n \cdot l_{1} \\
n \cdot l_{2} \\
l_{1} \cdot l_{2} \\
n \cdot I_{1}+n \cdot l_{2} \\
\bar{n} \cdot I_{1}+\bar{n} \cdot l_{2} \\
l_{1} \cdot I_{2}+I_{1} \cdot l_{3}+l_{2} \cdot l_{3}
\end{gathered}
$$

Step 2: sector decomposition

Let's focus on the sector $\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{2}\right)$. All other singularities are suppressed by the corresponding selector functions.

In this sector, divergencies can be generated by the following propagators:

$$
\begin{array}{cll}
\bar{n} \cdot I_{1} & \longrightarrow & I_{1-} \\
\bar{n} \cdot I_{2} & & I_{2-} \\
n \cdot I_{1} & & \\
n \cdot I_{2} & & \\
I_{1} \cdot I_{2} & & \frac{I_{1 T}^{2} l_{2-}}{2 I_{1-}}+\frac{I_{2 T}^{2} I_{1-}}{2 I_{2-}}-I_{1 T} I_{2 T} \cos \phi_{1} \\
n \cdot I_{1}+n \cdot I_{2} & & \\
\bar{n} \cdot I_{1}+\bar{n} \cdot I_{2} & \longrightarrow & I_{1-}+I_{2-} \\
I_{1} \cdot I_{2}+I_{1} \cdot I_{3}+I_{2} \cdot I_{3} &
\end{array}
$$

Step 2: sector decomposition

Let's focus on the sector $\left(I_{1} \cdot I_{2}\right)\left(\bar{n} \cdot I_{1}\right)\left(\bar{n} \cdot I_{2}\right)$. All other singularities are suppressed by the corresponding selector functions.

In this sector, divergencies can be generated by the following propagators:

$$
\begin{array}{cll}
\bar{n} \cdot I_{1} & \longrightarrow & I_{1-} \\
\bar{n} \cdot I_{2} & & I_{2-} \\
n \cdot I_{1} & & \\
n \cdot I_{2} & & \frac{I_{T T}^{2} I_{2-}}{2 I_{1-}}+\frac{I_{2 T}^{2} I_{1-}}{2 I_{2-}}-I_{1 T} I_{2 T} \cos \phi_{1} \\
I_{1} \cdot I_{2} & & \\
n \cdot I_{1}+n \cdot I_{2} & & I_{1-}+I_{2-} \\
\bar{n} \cdot I_{1}+\bar{n} \cdot I_{2} & & \\
I_{1} \cdot I_{2}+I_{1} \cdot I_{3}+I_{2} \cdot I_{3} & &
\end{array}
$$

Step 2: sector decomposition

The nonlinear transformation

$$
\zeta=\frac{1}{2} \frac{\left(I_{1 T} I_{2-}-I_{1-} I_{2 T}\right)^{2}\left(1+\cos \phi_{1}\right)}{I_{1 T}^{2} I_{2-}^{2}+I_{1-}^{2} I_{2 T}^{2}-2 I_{1-} I_{2-} I_{1} T I_{2 T} \cos \phi_{1}}
$$

Step 2: sector decomposition

The nonlinear transformation

$$
\zeta=\frac{1}{2} \frac{\left(I_{1} T I_{2-}-I_{1-} I_{2 T}\right)^{2}\left(1+\cos \phi_{1}\right)}{I_{1 T}^{2} T I_{2-}^{2}+I_{1-}^{2} I_{2 T}^{2}-2 I_{1-} I_{2-} I_{1} T I_{2 T} \cos \phi_{1}}
$$

turns

$$
I_{1} \cdot I_{2}=\frac{l_{1 T}^{2} l_{2-}}{2 I_{1-}}+\frac{I_{2 T}^{2} l_{1-}}{2 l_{2-}}-I_{1 T} I_{2 T} \cos \phi_{1}
$$

Step 2: sector decomposition

The nonlinear transformation

$$
\zeta=\frac{1}{2} \frac{\left(I_{1 T} I_{2-}-I_{1-} I_{2 T}\right)^{2}\left(1+\cos \phi_{1}\right)}{l_{1 T}^{2} I_{2-}^{2}+I_{1-}^{2} I_{2 T}^{2}-2 I_{1-} I_{2-} I_{1 T} I_{2 T} \cos \phi_{1}}
$$

turns

$$
I_{1} \cdot I_{2}=\frac{I_{1 T}^{2} l_{2-}}{2 I_{1-}}+\frac{l_{2 T}^{2} l_{1-}}{2 l_{2-}}-I_{1 T} I_{2 T} \cos \phi_{1}
$$

into

$$
I_{1} \cdot I_{2}=\frac{\left(I_{1 T}^{2} I_{2-}^{2}-l_{1-}^{2} I_{2 T}^{2}\right)^{2}}{2 I_{1-} I_{2-}\left(l_{1 T}^{2} I_{2-}^{2}+l_{1-}^{2} I_{2 T}^{2}-2 I_{1-} I_{2-} I_{1 T} I_{2 T}(1-2 \zeta)\right)}
$$

Step 2: sector decomposition

$$
\begin{array}{ll}
I_{1-} & =I_{1 T} I_{1-} \\
I_{2-} & =I_{2 T} I_{2-}
\end{array} I_{1-}>I_{2-} I_{1-}<I_{2-} \quad I_{1-} \rightarrow I_{1-} I_{2-}
$$

Step 2: sector decomposition

Step 2: sector decomposition

$$
\begin{aligned}
& I_{2-}<\frac{1}{2} \int I_{1-}=I_{1 T} I_{1-} \\
& I_{2-} \\
& I_{2-}>\frac{1}{2}
\end{aligned} I_{2 T} I_{2-}
$$

This algorithm factorizes all overlapping singularities

Status

The integrals take now the desired form

$$
\mathcal{I}_{i}=\sum_{j \in \text { sectors }} \int_{0}^{1} \frac{d x_{1}}{x_{1}^{1+a_{1} \epsilon}} \frac{d x_{2}}{x_{2}^{1+a_{2} \epsilon}} \frac{d x_{3}}{x_{3}^{1+a_{3} \epsilon}} \frac{d x_{4}}{x_{4}^{1+a_{4} \epsilon}} d x_{5} \cdots d x_{9} \mathcal{W}_{j}\left(x_{1}, x_{2}, \ldots, x_{9}\right)
$$

Status

- The integrals take now the desired form

$$
\mathcal{I}_{i}=\sum_{j \in \text { sectors }} \int_{0}^{1} \frac{d x_{1}}{x_{1}^{1+a_{1} \epsilon}} \frac{d x_{2}}{x_{2}^{1+a_{2} \epsilon}} \frac{d x_{3}}{x_{3}^{1+a_{3} \epsilon}} \frac{d x_{4}}{x_{4}^{1+a_{4} \epsilon}} d x_{5} \cdots d x_{9} \mathcal{W}_{j}\left(x_{1}, x_{2}, \ldots, x_{9}\right)
$$

- We checked that, for the case of the $q \rightarrow q \bar{q} q g$ contribution to the beam function, the weights \mathcal{W}_{j} are finite in the limit of $x_{i} \rightarrow 0$, as required
- We are now ready to evaluate the integrals

Conclusions

- We have constructed a framework based on sector decomposition and used it to complete the calculation of the the NNLO soft function for top pair production

Conclusions

- We have constructed a framework based on sector decomposition and used it to complete the calculation of the the NNLO soft function for top pair production
- The framework has been extensively validated and cross-checked:

1. Cancellation of α poles, including ϵ / α, and ϵ poles beyond $1 / \epsilon^{2}$
2. Perfect agreement with analytic calculation for bubble graphs
3. RG result for the complete NNLO soft function recovered: real and imaginary part

Conclusions

- We have constructed a framework based on sector decomposition and used it to complete the calculation of the the NNLO soft function for top pair production
- The framework has been extensively validated and cross-checked:

1. Cancellation of α poles, including ϵ / α, and ϵ poles beyond $1 / \epsilon^{2}$
2. Perfect agreement with analytic calculation for bubble graphs
3. RG result for the complete NNLO soft function recovered: real and imaginary part \rightarrow direct demonstration of validity of the small- q_{T} factorization for top pair production at NNLO

Conclusions

- We have then extended the framework such that it can be used to calculate $\mathrm{N}^{3} \mathrm{LO}$ beam function

Conclusions

- We have then extended the framework such that it can be used to calculate $\mathrm{N}^{3} \mathrm{LO}$ beam function
- We constructed a set of selector functions and found corresponding parametrizations

Conclusions

- We have then extended the framework such that it can be used to calculate $\mathrm{N}^{3} \mathrm{LO}$ beam function
- We constructed a set of selector functions and found corresponding parametrizations
- We designed specific sector-decomposition algorithm to disentangle all overlapping singularities

Conclusions

- We have then extended the framework such that it can be used to calculate $\mathrm{N}^{3} \mathrm{LO}$ beam function
- We constructed a set of selector functions and found corresponding parametrizations
- We designed specific sector-decomposition algorithm to disentangle all overlapping singularities
- We have tested that the resulting weight functions are finite

Conclusions

- We have then extended the framework such that it can be used to calculate $\mathrm{N}^{3} \mathrm{LO}$ beam function
- We constructed a set of selector functions and found corresponding parametrizations
- We designed specific sector-decomposition algorithm to disentangle all overlapping singularities
- We have tested that the resulting weight functions are finite
- We are now ready to evaluate all the divergent integrals

Acknowledgements

This work has been partly supported by the National Science Centre, Poland grant POLONEZ No. 2015/19/P/ST2/03007. The project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement NO. 665778 . The work has been also supported by the National Science Centre, Poland grant OPUS 14 No. 2017/27/B/ST2/02004.

NATIONAL SCIENCE CENTRE
POLAND

[^0]: ${ }^{\dagger}$ We used $\beta_{t}=0.4, \theta=0.5$.

