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Outline

1. The cross sections in QCD factorize in the limit of small transverse
momentum, qT , of the produced object

2. The ingredients which appears in the factorization formula are known
as the hard, the soft and the beam functions

3. I shall present the complete result for the NNLO soft function for
top pair production and report on progress towards the N3LO beam
functions
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Big picture

I Each collision at the LHC involves interactions of quarks and gluons
↪→ Understanding of strong interactions is critical to fully exploit
potential of the LHC at the new energy frontier

I Stringent limits on BSM have been set. So far, no new physics
↪→ This calls for even more precise theoretical predictions

Predictions in perturbative QCD

I In the region where the strong coupling αs � 1, fixed-order
perturbative expansions is expected to work well

σ = σ0︸︷︷︸
LO

+ αsσ1︸︷︷︸
NLO

+ α2
sσ2︸︷︷︸

NNLO

+ α3
sσ3︸︷︷︸

N3LO

+ · · ·
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Anatomy of perturbative QCD calculations

Leading Order (LO)
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Anatomy of perturbative QCD calculations

Next-to-Leading Order (NLO)

Real
∫

d4k ⇒ divergent in the limits
k → 0 or k ‖ p

Virtual
∫

d4−2εk =
1
ε2 +

1
ε

+ finite
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Anatomy of perturbative QCD calculations

σNLO = R + V

I R and V are separately divergent in the soft and collinear limits
(IR divergences)

I Kinoshita-Lee-Nauenberg theorem guarantees that σNLO is finite

↪→ Divergences of R and V have to cancel

How to carry out this cancellation in practice, given that R is integrated
in 4 while V in d dimensions?
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Anatomy of perturbative QCD calculations
I Subtraction

σNLO = lim
ε→0

{∫
ddk R +

∫
ddk V

}

= lim
ε→0

{∫
d4k (R − S)︸ ︷︷ ︸

finite

+

∫
ddk S︸ ︷︷ ︸
1
ε

+

∫
ddk V︸ ︷︷ ︸
−1
ε

}

d = 4− 2ε

S ' R in soft/collinear limit but simpler, hence integrable
analytically in d dimensions

I Slicing

σNLO =

∫
d4k (R + V )

{
Θ(χcut − χ(k)) +Θ(χ(k)− χcut)

}
=

∫
d4k (R + V )Θ(χcut − χ(k))︸ ︷︷ ︸

unresolved

+

∫
d4k R Θ(χ(k)− χcut)︸ ︷︷ ︸

resolved
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The qT slicing method
[Catani, Grazzini ‘07, ‘15]

p + p → F (qT ) + X

σFNmLO =

∫ qT,cut

0
dqT

dσFNmLO

dqT
+

∫ ∞
qT,cut

dqT
dσFNmLO

dqT

=

∫ qT,cut

0
dqT

dσFNmLO

dqT
+

∫ ∞
qT,cut

dqT
dσF+jet

Nm−1LO

dqT

enough to know in
small-qT approximation

known
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Factorization

where F = H,Z ,W ,ZZ ,WW , tt̄, . . .

I q2 ∼ q2
T � ΛQCD collinear factorization

dσF
dΦ

= φ1 ⊗ φ2 ⊗ C +O
(

1
q2

)
I q2 � q2

T > ΛQCD small-qT factorization

dσF
dΦ

= B1 ⊗ B2 ⊗H⊗ S +O
(

q2
T

q2

)
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All those functions
To get the cross section at NmLO, we need to know all those functions
at NmLO

dσNmLO
F

dΦ
= BNmLO

1 ⊗ BNmLO
2 ⊗HNmLO ⊗ SNmLO

B - beam function - radiation collinear to the beam,
process-independent, known up to NNLO

H - hard function - virtual corrections, process-dependent

S - soft function - soft, real radiation, process-dependent

Today, I will focus on Sand B.
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Renormalization

dσF
dΦ

= B(bare)
1 ⊗ B(bare)

2 ⊗ Tr
[
H(bare) ⊗ S(bare)

]

= ZBB(bare)
1 ⊗ ZBB(bare)

2 ⊗ Tr
[
Z †HH

(bare)ZH ⊗ Z †SS
(bare)ZS

]
= B1(µ)⊗ B2(µ)⊗ Tr [H(µ)⊗ S(µ)]

finite

separately divergent

separately finite

d
dµ

dσF
dΦ

= 0 → Renormalization Group Equations for B,H and S
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Soft Collinear Effective Theory (SCET)

SCET ' QCD
∣∣∣
IR limit

I Hard degrees of freedom are integrated out into Wilson coefficients,
which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft
components:

φ(x) = φc(x) + φc̄(x) + φs(x)

The new fields decouple in the Lagrangian

LSCET = Lc + Lc̄ + Ls

I The separation of fields in the Lagrangian into collinear, anti-collinear
and soft sectors, facilitates proofs of factorization theorems
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Small-qT factorization in SCET
Gluons’ momenta in light-cone coordinates

kµi =
(
k+
i , k

−
i ,k

⊥
i

)
where k± = k0 ± k3

Expansion parameter

λ =

√
q2
T

q2 � 1

Regions

collinear kµi ∼ (1, λ2, λ) Q2 B1

anti-collinear kµi ∼ (λ2, 1, λ) Q2 B2

hard kµi ∼ (1, 1, 1) Q2 H

soft kµi ∼ (λ, λ, λ) Q2 S
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Rapidity divergences and analytic regulator

Modification of the measure [Becher, Bell ‘12]∫
ddk δ+(k2)→

∫
ddk

(
ν

k+

)α
δ+(k2)

I The regulator is necessary at intermediate steps of the calculation.
I Rapidity divergences do not appear in QCD, hence, the complete

SCET result has to stay finite in the limit α→ 0.
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NNLO soft function
for top pair production
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Soft function

I Represents corrections coming from exchanges of real, soft gluons,
whose transverse momenta sum up to a fixed value qT

Sbare(qT , βt , θ) ∝
∑

δ (qT − |
∑
i ki⊥|)

∏
i δ

+(k2
i )

βt=

√
1−

4m2
t

M2

I external momenta→Wilson Lines along n, n̄, v3, v4 (Born kinematics)

S i ī =
∑∞
n=0 S

(n)
i ī

(
αs
4π

)n
S(n)
i ī

=
∑
{j}w

i ī
{j}I{j}

colour matrices
phase space
integrals

Sebastian Sapeta (IFJ PAN Kraków) Small-qT factorization and its for use for higher order calculations in QCD 16/46



Soft function

I Represents corrections coming from exchanges of real, soft gluons,
whose transverse momenta sum up to a fixed value qT

Sbare(qT , βt , θ) ∝
∑

δ (qT − |
∑
i ki⊥|)

∏
i δ

+(k2
i )

βt=

√
1−

4m2
t

M2

I external momenta→Wilson Lines along n, n̄, v3, v4 (Born kinematics)

S i ī =
∑∞
n=0 S

(n)
i ī
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=
∑
{j}w

i ī
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Renormalization

I RG equation for the soft function

d
d lnµ

S i ī (µ) = −γs†
i ī
S i ī (µ)− S i ī (µ)γsi ī

I Soft anomalous dimension

γs = −Z−1
s

dZ s
d lnµ

Specifically, at the order α2
s , we get

S(2)︸︷︷︸
finite part only

=

pole part only︷ ︸︸ ︷
Z †(2)
s S

(0)
bare + S(0)

bareZ
(2)
s + Z †(1)

s S
(0)
bareZ

(1)
s

+ Z †(1)
s S

(1)
bare + S(1)

bareZ
(1)
s + S(2)

bare −
β0

ε
S(1)

bare︸ ︷︷ ︸
finite + pole part
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Soft function at NLO

I Known in analytic form
[Li, Li, Shao, Yan, Zhu ‘13; Catani, Grazzini, Torre ‘13]

S(1)

i ī
= 4L⊥

(
2w 13
i ī ln

−t1

mtM
+ 2w 23

i ī ln
−u1

mtM
+w 33

i ī

)
− 4

(
w 13
i ī +w 23

i ī

)
Li2

(
1− t1u1

m2
tM2

)
+ 4w 33

i ī ln
t1u1

m2
tM2

− 2w 34
i ī

1 + β2
t

βt

[
L⊥ ln xs − Li2

(
−xs tg2 θ

2

)
+ Li2

(
− 1

xs
tg2 θ

2

)
+ 4 ln xs ln cos

θ

2

]
+O (ε)

L⊥ = ln
x2
Tµ

2

4e−2γE
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)
Li2

(
1− t1u1

m2
tM2

)
+ 4w 33

i ī ln
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Soft function at NNLO
Three distinct groups of diagrams:

I Bubble

I Single-cut

I Double-cut

DIFFERENTIAL
EQUATIONS

DIRECT
INTEGRATION

SECTOR DECOMPOSITION
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Double-cut NNLO integrals
Example:

Ĩ3gv ,ij =

∫
ddk1 ddk2 δ

+(k2
1 ) δ+(k2

2 ) δ((k1 + k2)2
T − q2

T )

(n · k1)α (n · k2)α (ni · k1) (nj · (k1 + k2)) (k1 + k2)2

I divergent in the limits ε→ 0 and α→ 0

I a range of overlapping singularities

I complication introduced by δ((k1 + k2)2
T − q2

T ) which additionally
couples gluon’s momenta

To disentangle overlapping singularities and calculate regularized integrals
we use the method of sector decomposition [Binoth, Heinrich, ‘00; Borowka,

Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke ‘17].
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Sector decomposition

∫ 1

0
dx dy

W(x , y)

(x + y)2+ε

=

∫ 1

0
dx dy

W(x , y)

(x + y)2+ε

[ (1)︷ ︸︸ ︷
Θ(x − y) +

(2)︷ ︸︸ ︷
Θ(y − x)

]
....................................................................

(1) y = x t (2) x = y t

....................................................................

=

∫ 1

0
dx dt

W(x , tx)

(1 + t)2+εx1+ε
+

∫ 1

0
dt dy

W(ty , y)

(1 + t)2+εy 1+ε
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Sector decomposition
In general, each integral can be expressed as

I =
∑

i ∈ sectors

∫ 1

0

dx1

x1+a1ε
1

dx2

x1+a2ε
2

· · · dxn
x1+anε
n

Wi (x1, x2, . . . , xn)

and then we use

1

x1+aiε
i

= − 1
aiε

δ(xi ) +
∞∑
n=0

ani ε
n

n!

[
logn(xi )

xi

]
+

with the + prescription defined as∫ 1

0
dx g(x)+f (x) =

∫ 1

0
dx g(x) (f (x)− f (0))

After the above procedure is performed, all divergences become explicit
and are turned in to ε poles

Ii =
∑
n

(∫
Win

)
︸ ︷︷ ︸

finite

×εn
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Sector decomposition

Two types of singularities

I Endpoint, e.g. soft: (
k+

1 , k
−
1 , k

⊥
1

)
→ 0

I Manifold, e.g. collinear

k1 · k2 → 0

0

20

40

k+

0

20

40

l+

- 1.0

- 0.5

0.0

0.5

1.0

yT
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Single-cut (real-virtual)

S (2)
1-cut =

∑
ijk

∫
dd l

δ+(l2) δ(lT − qT )

lα+ nk · l
nµkT ak Jµij,a(l)

I The soft current Jµij,a(l) is known up to NLO [Catani, Grazzini ‘00;

Bierenbaum, Czakon, Mitov ‘12; Czakon, Mitov ‘18].

I S (2)
1-cut can be obtained by a relatively simple integration over lµ.

I Single-cut piece of the soft function exhibits both real and imaginary
part. The latter when i 6= j 6= k, the former, otherwise.
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Bubble

I Solvable analytically: direct cross check of our sector decomposition-
based implementation

I Non-trivial tensor structure → challenging numerators

I Laboratory to stress-test sector decomposition-based methodology

I Comparable with nf part of Renormalization Group prediction
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Complete Soft Function at NNLO: structure of the result

I In momentum space

S (2,bare)(qT , βt , θ) =
1

qpT

[
S (2)

bubble(βt , θ, ε)+S (2)
1-cut(βt , θ, ε)+S (2)

2-cut(βt , θ, ε)

]

I
Fourier Transform

In position space

S (2,bare)(L⊥, βt , θ) =

[
1
ε

+ L⊥ + L2
⊥ + . . .

]

×
[

S (2)
bubble(βt , θ, ε) + S (2)

1-cut(βt , θ, ε) + S (2)
2-cut(βt , θ, ε)

]

↪→ Momentum-space soft function has to be calculated up to order ε.
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Complete Soft Function at NNLO: structure of the result

S (2,bare)(L⊥, βt , θ) =

[
1
ε

+ L⊥ + L2
⊥ + . . .

]

×
[

S (2)
bubble(βt , θ, ε) + S (2)

1-cut(βt , θ, ε) + S (2)
2-cut(βt , θ, ε)

]

=
1
ε2 S (2,−2)(L⊥) +

1
ε

S (2,−1)(L⊥) + S (2,0)(L⊥)

can be cross-checked against RG; fixes all L⊥-dependent terms in S(2,0)(L⊥)

I The only term that has to be obtained through direct calculation is
the L⊥-independent part of S (2,0)(L⊥).

I However, we calculate all terms and use the redundant ones for cross
checks against Renormalization Group prediction.
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S (2,bare)(L⊥, βt , θ) =

[
1
ε

+ L⊥ + L2
⊥ + . . .

]

×
[

S (2)
bubble(βt , θ, ε) + S (2)

1-cut(βt , θ, ε) + S (2)
2-cut(βt , θ, ε)

]

=
1
ε2 S (2,−2)(L⊥) +

1
ε

S (2,−1)(L⊥) + S (2,0)(L⊥)

can be cross-checked against RG; fixes all L⊥-dependent terms in S(2,0)(L⊥)

I The only term that has to be obtained through direct calculation is
the L⊥-independent part of S (2,0)(L⊥).

I However, we calculate all terms and use the redundant ones for cross
checks against Renormalization Group prediction.

Sebastian Sapeta (IFJ PAN Kraków) Small-qT factorization and its for use for higher order calculations in QCD 27/46



Complete Soft Function at NNLO: structure of the result

S (2,bare)(L⊥, βt , θ) =

[
1
ε

+ L⊥ + L2
⊥ + . . .

]

×
[

S (2)
bubble(βt , θ, ε) + S (2)

1-cut(βt , θ, ε) + S (2)
2-cut(βt , θ, ε)

]

=
1
ε2 S (2,−2)(L⊥) +

1
ε

S (2,−1)(L⊥) + S (2,0)(L⊥)

can be cross-checked against RG; fixes all L⊥-dependent terms in S(2,0)(L⊥)

I The only term that has to be obtained through direct calculation is
the L⊥-independent part of S (2,0)(L⊥).

I However, we calculate all terms and use the redundant ones for cross
checks against Renormalization Group prediction.

Sebastian Sapeta (IFJ PAN Kraków) Small-qT factorization and its for use for higher order calculations in QCD 27/46



Complete Soft Function at NNLO: structure of the result

S (2,bare)(L⊥, βt , θ) =

[
1
ε

+ L⊥ + L2
⊥ + . . .

]

×
[

S (2)
bubble(βt , θ, ε) + S (2)

1-cut(βt , θ, ε) + S (2)
2-cut(βt , θ, ε)

]

=
1
ε2 S (2,−2)(L⊥) +

1
ε

S (2,−1)(L⊥) + S (2,0)(L⊥)

can be cross-checked against RG; fixes all L⊥-dependent terms in S(2,0)(L⊥)

I The only term that has to be obtained through direct calculation is
the L⊥-independent part of S (2,0)(L⊥).

I However, we calculate all terms and use the redundant ones for cross
checks against Renormalization Group prediction.

Sebastian Sapeta (IFJ PAN Kraków) Small-qT factorization and its for use for higher order calculations in QCD 27/46



Complete Soft Function at NNLO: structure of the result

S (2,bare)(L⊥, βt , θ) =

[
1
ε

+ L⊥ + L2
⊥ + . . .

]

×
[

S (2)
bubble(βt , θ, ε) + S (2)

1-cut(βt , θ, ε) + S (2)
2-cut(βt , θ, ε)

]

=
1
ε2 S (2,−2)(L⊥) +

1
ε

S (2,−1)(L⊥) + S (2,0)(L⊥)

can be cross-checked against RG; fixes all L⊥-dependent terms in S(2,0)(L⊥)

I The only term that has to be obtained through direct calculation is
the L⊥-independent part of S (2,0)(L⊥).

I However, we calculate all terms and use the redundant ones for cross
checks against Renormalization Group prediction.

Sebastian Sapeta (IFJ PAN Kraków) Small-qT factorization and its for use for higher order calculations in QCD 27/46



Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most
1
ε2 singularity,

higher order poles appear in individual contributions.

I All α poles, including
ε

α
, as well as

1
ε4 pole cancel within each

colour structure, for example

1
ε4

I
1
ε3 pole cancels between 1-cut and 2-cut contributions

1
ε3

† We used βt = 0.4, θ = 0.5.
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Quark bubble contribution (qq̄ channel)

Validation of the framework

I Perfect agreement of the quark bubble results obtained from differen-
tial equations and sector decomposition for all terms in ε expansion

I Reproduction of the nf part of the Renormalization Group result
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Imaginary part

(qq̄ channel) (gg channel)
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Real part (qq̄ channel)
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Real part (gg channel)
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N3LO beam function
(work in progress)
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The beam function
I Represents corrections coming from emissions of real, collinear gluons,

whose transverse momenta sum up to a fixed value qT and whose
longitudinal component along p sums up to 1− z

Bbare(qT , z) ∝
∑

× δ (qT − |
∑
i ki⊥|)

∏
i δ

+(k2
i ) δ (n̄ ·

∑
ki − (1− z) n̄ · p)

p =
n̄ · p

2
n

n2 = n̄2 = 0

n · n̄ = 2
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NNLO beam function

I Known analytically [Gehrmann, Lübbert, Yang ’12, ’14].

I We checked that our method reproduces that result

CF Nf TF

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40
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80

z

B
q
\q
(z
,
0
)
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N3LO propagators

light-cone internal only

n · l1 l1 · l2
n · l2 l1 · l3
n · l3 l2 · l3
n̄ · l1 l1 · l2 + l1 · l3 + l2 · l3
n̄ · l2
n̄ · l3 internal+external

n · l1 + n · l2 p− n · l1
n · l1 + n · l3 p− n · l2
n · l2 + n · l3 p− n · l3
n̄ · l1 + n̄ · l2 l1 · l2 − p− n · l1 − p− n · l2
n̄ · l1 + n̄ · l3 l1 · l3 − p− n · l1 − p− n · l3
n̄ · l2 + n̄ · l3 l2 · l3 − p− n · l2 − p− n · l3
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The way to go

The beam function

Bbare(z , qT ) =
∑
i

Ii ,

can be calculated if each integral is represented as

Ii =
∑

j ∈ sectors

∫ 1

0

dx1

x1+a1ε
1

dx2

x1+a2ε
2

dx3

x1+a3ε
3

dx4

x1+a4ε
4

dx5 · · · dx9Wj(x1, x2, . . . , x9) .

Then we can use

1

x1+aiε
i

= − 1
aiε

δ(xi ) +
∞∑
n=0

ani ε
n

n!

[
logn(xi )

xi

]
+

.
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N3LO propagators
The first problem: It is impossible to parameterize the momenta such

that all scalar products look simple simultaneously.

Example

n = [1, 0, 0, 0, 1] n̄ = [1, 0, 0, 0,−1] l1 =

[
l2
1− + l2

1T

2 l1−
, 0, 0, 0,

l2
1− − l2

1T

2 l1−

]

l3 =

[
l2
3− + l2

3T

2 l3−
, 0, l3T sinχ1, l3T cosχ1,

l2
3− − l2

3T

2 l3−

]

l2 =

[
l2
2− + l2

2+

2 l2
2−

, l2T sinφ1 sinφ2, l2T cosφ2 sinφ1, l2T cosφ1,
l2
2− − l2

2+

2 l2−

]

n̄ · l1 = l1− n̄ · l2 = l2− n̄ · l3 = l3−

l1 · l2 =
l2
1T l2−
2 l1−

+
l2
2T l1−
2 l2−

− l1T l2T cosφ1

⇒ φ1 = 0 &
l1T
l1−

=
l2T
l2−

l2 · l3 =
l2
2T l3−
2 l2−

+
l2
3T l2−
2 l3−

− l2T l3T cosχ1 cosφ1 − l2T l3T cosφ2 sinχ1 sinφ1
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Step 1: selector functions

7 triple collinear

(l1 · l2) (n · l1) (n · l2)

(l1 · l3) (n · l1) (n · l3)

(l2 · l3) (n · l2) (n · l3)

(l1 · l2) (n̄ · l1) (n̄ · l2)

(l1 · l3) (n̄ · l1) (n̄ · l3)

(l2 · l3) (n̄ · l2) (n̄ · l3)

(l1 · l2) (l1 · l3) (l2 · l3)

12 double collinear

(n · l1) (n̄ · l2) (l1 · l3) (n · l2)

(n · l1) (n̄ · l3) (l2 · l3) (n · l1)

(n · l2) (n̄ · l3) (l1 · l2) (n · l3)

(n̄ · l1) (n · l2) (l1 · l3) (n̄ · l2)

(n̄ · l1) (n · l3) (l2 · l3) (n̄ · l1)

(n̄ · l2) (n · l3) (l1 · l2) (n̄ · l3)

S1,2;2 =
1

d1,2;1D
,

d1,2;1 = (l1 · l2) (n̄ · l1) (n̄ · l2) ,

D =
∑
i,j,k

1
di,j ;k

+
∑
i,j,k,l

1
di,j ;k,l

,

S1,2;2 =
1

1 +
(l1 · l2) (n̄ · l2)

(l1 · l3) (n̄ · l3)
+

(l1 · l2) (n̄ · l1)

(l1 · l3)
+ · · ·

,
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Step 2: sector decomposition

Let’s focus on the sector (l1 · l2) (n̄ · l1) (n̄ · l2) . All other singularities are
suppressed by the corresponding selector functions.

In this sector, divergencies can be generated by the following propagators:

n̄ · l1

−→ l1−

n̄ · l2

−→ l2−

n · l1

n · l2

l1 · l2

−→ l2
1T l2−
2l1−

+
l2
2T l1−
2l2−

− l1T l2T cosφ1

n · l1 + n · l2

n̄ · l1 + n̄ · l2

−→ l1− + l2−

l1 · l2 + l1 · l3 + l2 · l3
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Step 2: sector decomposition

The nonlinear transformation

ζ =
1
2

(l1T l2− − l1−l2T )2 (1 + cosφ1)

l2
1T l2

2− + l2
1−l2

2T − 2l1−l2−l1T l2T cosφ1

turns

l1 · l2 =
l2
1T l2−
2l1−

+
l2
2T l1−
2l2−

− l1T l2T cosφ1

into

l1 · l2 =
(l2

1T l2
2− − l2

1−l2
2T )2

2 l1−l2−(l2
1T l2

2− + l2
1−l2

2T − 2 l1−l2−l1T l2T (1− 2ζ))

Sebastian Sapeta (IFJ PAN Kraków) Small-qT factorization and its for use for higher order calculations in QCD 41/46



Step 2: sector decomposition

The nonlinear transformation

ζ =
1
2

(l1T l2− − l1−l2T )2 (1 + cosφ1)

l2
1T l2

2− + l2
1−l2

2T − 2l1−l2−l1T l2T cosφ1

turns

l1 · l2 =
l2
1T l2−
2l1−

+
l2
2T l1−
2l2−

− l1T l2T cosφ1

into

l1 · l2 =
(l2

1T l2
2− − l2

1−l2
2T )2

2 l1−l2−(l2
1T l2

2− + l2
1−l2

2T − 2 l1−l2−l1T l2T (1− 2ζ))

Sebastian Sapeta (IFJ PAN Kraków) Small-qT factorization and its for use for higher order calculations in QCD 41/46



Step 2: sector decomposition

The nonlinear transformation

ζ =
1
2

(l1T l2− − l1−l2T )2 (1 + cosφ1)

l2
1T l2

2− + l2
1−l2

2T − 2l1−l2−l1T l2T cosφ1

turns

l1 · l2 =
l2
1T l2−
2l1−

+
l2
2T l1−
2l2−

− l1T l2T cosφ1

into

l1 · l2 =
(l2

1T l2
2− − l2

1−l2
2T )2

2 l1−l2−(l2
1T l2

2− + l2
1−l2

2T − 2 l1−l2−l1T l2T (1− 2ζ))

Sebastian Sapeta (IFJ PAN Kraków) Small-qT factorization and its for use for higher order calculations in QCD 41/46



Step 2: sector decomposition
l1− = l1T l1−
l2− = l2T l2−

l2− < 1
2 l2− > 1

2

l2T > l1T

l2− < 1
2 l2− > 1

2

l1T > l2T

l2− → l2−l1− l1− > l2−

l1− < 1
2 l1− > 1

2

l2T > l1T

l1− < 1
2 l1− > 1

2

l1T > l2T

l1− < l2− l1− → l1−l2−

l1− + l2− → l1−(1 + l2−) l1− + l2− → l2−(1 + l1−)

I This algorithm factorizes all overlapping singularities
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Status

I The integrals take now the desired form

Ii =
∑

j ∈ sectors

∫ 1

0

dx1

x1+a1ε
1

dx2

x1+a2ε
2

dx3

x1+a3ε
3

dx4

x1+a4ε
4

dx5 · · · dx9Wj(x1, x2, . . . , x9)

I We checked that, for the case of the q → qq̄qg contribution to the
beam function, the weights Wj are finite in the limit of xi → 0, as
required

I We are now ready to evaluate the integrals
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Conclusions

I We have constructed a framework based on sector decomposition and
used it to complete the calculation of the the NNLO soft function for
top pair production

I The framework has been extensively validated and cross-checked:

1. Cancellation of α poles, including ε/α, and ε poles beyond 1/ε2

2. Perfect agreement with analytic calculation for bubble graphs

3. RG result for the complete NNLO soft function recovered: real and
imaginary part

→ direct demonstration of validity of the small-qT
factorization for top pair production at NNLO
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Conclusions

I We have then extended the framework such that it can be used to
calculate N3LO beam function

I We constructed a set of selector functions and found corresponding
parametrizations

I We designed specific sector-decomposition algorithm to disentangle
all overlapping singularities

I We have tested that the resulting weight functions are finite

I We are now ready to evaluate all the divergent integrals
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