# Fluctuations, Correlations and the QCD Phase diagram

A. Bzdak, R. Holzmann, VK arXiv:1603.09057

A. Bzdak, VK, N. Strodthoff: arXiv:1607.07375

A. Bzdak, VK, V. Skokov: arXiv:1612.05128

# An old question



## In a new context



# What have we learned

- Matter has rather small shear viscosity over entropy ratio
  - Similar phenomena also seen in p+p and p+A ??
- Matter is rather opaque for high momentum particles and jets
- Heavy quarks seem to "flow" just as much as light quarks







# What we know about the Phase Diagram



# Lattice QCD



7

## Hadron abundances

#### **Assumption:**

•Multiplicities are determined by statistical weights (chemical equilibrium)

Grand-canonical partition function:

$$\langle n_j 
angle = rac{(2J_j+1)V}{(2\pi)^3} \int \mathrm{d}^3 \mathrm{p} \; \left[ \mathrm{e}^{\sqrt{\mathrm{p}^2 + m_j^2}/T + \mu \cdot \mathbf{q}_j/T} \pm 1 
ight]^{-1}$$

#### **Parameters:**

V, T,  $\mu_{\rm B}$ , ( $\gamma_{\rm s}$ )

Allows in general excellent fits to measured multiplicities



NB: works also for pp (phase space dominance, Fermi 1950)

· -

## **Chemical freeze out systematics**



Provides rough idea which region in T, µ are probed

# What we "hope" for



## Is there a critical point?

# Nothing you cannot find in LA...



# Cumulants and phase structure



What we always see....



"T<sub>c</sub>" ~ 160 MeV

## **Derivatives**



## How to measure derivatives

At 
$$\mu = 0$$
:  

$$Z = tr e^{-\hat{E}/T + \mu/T\hat{N}_B}$$

$$\langle E \rangle = \frac{1}{Z} tr \hat{E} e^{-\hat{E}/T + \mu/T\hat{N}_B} = -\frac{\partial}{\partial 1/T} \ln(Z)$$

$$\langle (\delta E)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2 = \left(-\frac{\partial}{\partial 1/T}\right)^2 \ln(Z) = \left(-\frac{\partial}{\partial 1/T}\right) \langle E \rangle$$

$$\langle (\delta E)^n \rangle = \left(-\frac{\partial}{\partial 1/T}\right)^{n-1} \langle E \rangle$$

Cumulants of Energy measure the temperature derivatives of the EOS Cumulants of Baryon number measure the chem. pot. derivatives of the EOS

#### Fluctuations / Cumulants



### **Expectation from Calculations**





# **HADES** sees similar behavior

(J. Stroth, INT, Oct 2016)

#### Comparison to STAR

HADES data from unfolding method



<u>HADES</u>

# INT Exploring .. OCD Matter .. Energy Scans, Seattle - Joachim Stroth

20

#### Let's take the preliminary STAR data at face value

# From Cumulants to Correlations

Cumulants 
$$K_n = \frac{\partial^n}{\partial \hat{\mu}^n} P/T^4$$

$$K_{2} = \langle N - \langle N \rangle \rangle^{2} = \langle (\delta N)^{2} \rangle$$
  

$$\rho_{2}(p_{1}, p_{2}) = \rho_{1}(p_{1})\rho_{1}(p_{2}) + C_{2}(p_{1}, p_{2}),$$

C<sub>2</sub>: Correlation Function

 $K_3 = \left\langle (\delta N)^3 \right\rangle$ 

 $\begin{aligned} \rho_3(p_1,p_2,p_3) &= \rho_1(p_1)\rho_1(p_2)\rho_1(p_3) + \rho_1(p_1)C_2(p_2,p_3) + \rho_1(p_2)C_2(p_1,p_3) \\ &+ \rho_1(p_3)C_2(p_1,p_2) + C_3(p_1,p_2,p_3) \end{aligned}$ 

# From Cumulants to Correlations (no anti-protons)

Defining integrated correlations function

$$C_n = \int dp_1 \dots dp_n C_n(p_1, \dots, p_n)$$

Simple Algebra leads to relation between correlations  $C_n$  and  $K_n$ 

$$\begin{split} C_2 &= -K_1 + K_2, \\ C_3 &= 2K_1 - 3K_2 + K_3, \\ C_4 &= -6K_1 + 11K_2 - 6K_3 + K_4, . \end{split}$$

or vice versa

$$K_{2} = \langle N \rangle + C_{2}$$
  

$$K_{3} = \langle N \rangle + 3C_{2} + C_{3}$$
  

$$K_{4} = \langle N \rangle + 7C_{2} + 6C_{3} + C_{4}$$

## Correlations near the critical point

M. Stephanov, 0809.3450, PRL 102

Scaling of Cumulants K<sub>n</sub> with correlation length  $\xi$ 

$$K_2 \sim \xi^2, \ K_3 \sim \xi^{4.5}, \ K_4 \sim \xi^7$$

**Cumulants from Correlations** 

$$K_2 = \langle N \rangle + C_2$$
  

$$K_3 = \langle N \rangle + 3C_2 + C_3$$
  

$$K_4 = \langle N \rangle + 7C_2 + 6C_3 + C_4$$

Consequently:

$$C_2 \sim \xi^2, \ C_3 \sim \xi^{4.5}, \ C_4 \sim \xi^7$$

Correlations C<sub>n</sub> pick up the most divergent pieces of cumulants K<sub>n</sub>!

# (X. Luo, PoS Cpod 2014 (019) 4





#### Significant four particle correlations!

Four particle correlation dominate K<sub>4</sub> for central collisions at 7.7 GeV

$$K_{2} = \langle N \rangle + C_{2}$$
  

$$K_{3} = \langle N \rangle + 3C_{2} + C_{3}$$
  

$$K_{4} = \langle N \rangle + 7C_{2} + 6C_{3} + C_{4}$$

# Hades see even stronger correlations

Particle Correlations

NT Exploring .. OCD Matter .. Energy Scans, Seattle - Joachim Stroth



J. Stroth, INT, October 2016

HADES

 $C_2 = -\langle N \rangle + K_2,$ 

 $C_3 = 2 \langle N \rangle - 3K_2 + K_3,$ 

 $C_4 = -6 \langle N \rangle + 11K_2 - 6K_3 + K_4.$ 

# Correlations



# **Reduced correlation function**

Reduced correlation function

$$c_{k} = \frac{\int \rho_{1}(y_{1}) \cdots \rho_{1}(y_{k}) c_{k}(y_{1}, \dots, y_{k}) dy_{1} \cdots dy_{k}}{\int \rho_{1}(y_{1}) \cdots \rho_{1}(y_{k}) dy_{1} \cdots dy_{k}}$$

$$C_k = \langle N \rangle^k c_k$$

Independent sources such as resonances, cluster, p+p:

$$c_k \sim \frac{\langle N_s \rangle}{\langle N \rangle^k} \sim \frac{1}{\langle N \rangle^{k-1}}$$

For example two particle correlations:

 $c_2 \sim \frac{\text{Number of sources}}{\text{Number of all pairs}} = \frac{\text{Number of correlated pairs}}{\text{Number of all pairs}} = \frac{1}{\langle N \rangle}$ 

# **Centrality dependence**



# **Centrality dependence**



# **Rapidity dependence**

$$C_k(\Delta Y) = \int_{\Delta Y} dy_1 \dots dy_k 
ho_1(y_1) \dots 
ho_1(y_k) c_k(y_1, \dots, y_k)$$

Assume:  $\rho_1(y) \simeq const.$ 

short range correlations:

$$c_k(y_1, \dots, y_k) \sim \delta(y_1 - y_2) \dots \delta(y_{n-1} - y_k)$$
  
 $C_k(\Delta Y) \sim \Delta Y \to K_k \sim \Delta Y$ 

Long range correlations:

$$c_k(y_1,\ldots,y_k)=const.$$
  $C_k(\Delta Y)\sim (\Delta Y)^k$ 

# Preliminary Star data are consistent with long range rapidity correlations



7.7 GeV central

19.6 GeV central

# Energy dependence



Note: anti-protons are non- negligible above 19.6 GeV

# Can we understand these correlations?

- Two particle correlations can be understood by simple Glauber model + Baryon number conservation
- No way to get even close to the data for four particle correlations!



# Can we understand these correlations?

- Three and four particle correlations require lots of "fantasy"...
- For example, if about 40% of the nucleons come in 8-nucleon clusters one can get near the data...



Plenty of room for creative ideas!

# Summary

- Fluctuations sensitive to phase structure: - measure "derivatives" of EOS
- Measurements are difficult
- Cumulants contain information about correlations
- Preliminary STAR data:
  - Significant four particle correlations at 7.7 and 11.5 GeV
  - Dip in K<sub>4</sub>/K<sub>2</sub> at 19.6 GeV is due to negative two-particle correlations
  - Centrality dependence (at 7.7 GeV) indicates independent sources for N<sub>part</sub> < 150 and "collective" correlations for N<sub>part</sub>>200.
  - At about the same centrality three- and four particle correlations change sign!
    - •New dynamics?

# Summary

- Preliminary STAR data continued:
  - For central 7.7 and 11.5 GeV two and three particle correlations are negative and four particle are positive.
    - This would rule out a large area around the critical point
- The STAR data are still preliminary!
- Other more mundane effects may contribute
  - Fluctuations of system size (N<sub>part</sub>)
    - May explain 2-particle correlations
    - Fail to reproduce the magnitude of 3- and 4- particle correlations
- Understanding 3- and 4 particle correlations requires "desperate measures"!

# Thank You