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An old question
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Fermi 1953



In a new context
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What have we learned
• Matter has rather small 

shear viscosity over 
entropy ratio 

- Similar phenomena also 
seen in p+p and p+A ?? 

• Matter is rather opaque for 
high momentum 
particles and jets 

• Heavy quarks seem to 
“flow” just as much as 
light quarks

4

γ and Z-boson
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What we know about the Phase 
Diagram
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T

µ~920 MeV

Lattice QCD: 
Tc ~ 155 MeV 
pseudo-critical line up to O(µ2) 
pressure (EoS) up to O(µ4)

Theory, 
Measurements 

155MeV

Nuclear  
Liquid-Gas



Lattice QCD 
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Susceptibilities

Equation of state

Chiral (quark) condensate

condensed

Aoki et al, Nature 
443:675-678,2006

S. Borsanyi et al, JHEP 1011 (2010) 077 
Cross over transition
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Hadron abundances 

A. Andronic et al. 

Phys. Lett. B673, 142 (2009).

A. Andronic et al. 

Phys. Lett. B673, 142 (2009).

Assumption: 
●Multiplicities are determined by 

statistical weights (chemical equilibrium)
 

Grand-canonical partition function:          

Parameters:
V, T, µB, (γs)

  

Allows in general excellent fits  

to measured multiplicities

Assumption: 
●Multiplicities are determined by 

statistical weights (chemical equilibrium)
 

Grand-canonical partition function:          

Parameters:
V, T, µB, (γs)

  

Allows in general excellent fits  

to measured multiplicities

NB: works also for pp
(phase space dominance,
Fermi 1950)
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Chemical freeze out systematics

Provides rough idea which region in T, μ are probed



What we “hope” for
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T

µ~920 MeV

Cross over transition155MeV

Nuclear  
Liquid-Gas



Is there a critical point?
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Nothing you cannot find in LA…
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Cumulants and phase structure  
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What we always see.... What it really means....

“Tc” ~ 160 MeV



Derivatives
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Tc Tc

1st order 5th order

3th order0th order



How to measure derivatives
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At µ = 0:

Cumulants of Energy measure the temperature derivatives of the EOS

Z = tr e�Ê/T+µ/TN̂B

h(�E)2i = hE2i � hEi2 =

✓
� @

@1/T

◆2

ln(Z) =

✓
� @

@1/T

◆
hEi

h(�E)ni =
✓
� @

@1/T

◆n�1

hEi

hEi = 1

Z
tr Ê e�Ê/T+µ/TN̂B = � @

@1/T
ln(Z)

Cumulants of Baryon number measure the chem. pot. derivatives of the EOS
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Fluctuations / Cumulants
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Expectation from Calculations 

Characteristic “Oscillating pattern” 
is expected for the QCD critical 
point but the exact shape depends 
on the location of freeze-out with 
respect to the location of CP 

   - M. Stephanov, PRL107, 052301(2011) 
   - V. Skokov, Quark Matter 2012 
   - J.W. Chen, J. Deng, H. Kohyyama, arXiv: 
1603.05198, Phys. Rev. D93 (2016) 034037 

20                  200 

N. Xu, CPOD 2016



Latest STAR result on net-proton 
cumulants
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Energy Dependence of Moments of Net-Proton and Net-Charge Multiplicity Distributions at STAR
Xiaofeng Luo
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Figure 3: (Color online) Energy dependence of efficiency corrected cumulant ratios κσ2 = C4/C2 and
Sσ =C3/C2 of net-proton distributions in Au+Au collisions at different centralities (0∼ 5%,5∼ 10%,30∼
40%,70∼ 80%).

unity at 7.7 GeV. The Sσ at 0∼ 5% centrality bin shows a large drop at 7.7 GeV. One may note that
we only have statistical errors shown in the figure, which are still large due to limited statistics. The
systematical errors, which are dominated by the efficiency correction and the particle identification,
are being studied.

Large acceptance is crucial for fluctuations of conserved quantities in heavy-ion collisions
to probe the QCD phase transition and critical point. The signals for the phase transition and/or
CP will be suppressed with small acceptance. In the Fig. 4, we show the energy dependence
of efficiency corrected κσ 2 =C4/C2 and Sσ /Skellam of net-proton distributions with various pT
and rapidity range for 0 ∼ 5% most central Au+Au collisions. The Skellam baseline assumes the
protons and anti-protons distribute as independent Poisson distributions. It is constructed from the
efficiency-corrected mean values of the protons and anti-protons. It is expected to represent the
thermal statistical fluctuations of the net-proton number [24]. The κσ 2 and Sσ /Skellam are to be
unity for Skellam baseline as well as in the Hadron Resonance Gas model. In the two upper panels
of Fig. 4, when we gradually enlarge the pT or rapidity acceptance, the values of κσ 2 show a small
changes close to unity at energies above 39 GeV, while below 39 GeV, more pronounced structure
is observed for a larger pT or rapidity acceptance. In the two lower panels of Fig. 4, when we
enlarge the pT or rapidity acceptance, the Sσ /Skellam shows strong suppression with respect to
unity and monotonically decrease with energy. In contrast to κσ 2, the significantly increase above
unity at 7.7 GeV is not observed in Sσ /Skellam, but shows strong suppression below unity. The
published results are shown as solid red triangles in the figure.

The efficiency-corrected net-charge results are shown in Fig. 5. We did not observe non-
monotonic behavior for Sσ and κσ 2 within current statistics for net-charge. The expectations from
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X. Luo, arXiv:1503.02558

Energy Dependence of Moments of Net-Proton and Net-Charge Multiplicity Distributions at STAR
Xiaofeng Luo
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Figure 2: (Color online) Centrality dependence of various order efficiency corrected cumulants (C1∼C4) for
net-proton, proton and anti-proton distributions in Au+Au collisions at √sNN=7.7 , 11.5, 19.6, 27, 39, 62.4
and 200 GeV. Error bars in the figure are statistical errors only. Blue empty circles represent the efficiency
uncorrected cumulants of net-proton distributions.

proton and anti-proton distributions show a linear dependence on the average number of participant
nucleons (< Npart >). The proton cumulants are always larger than the anti-proton cumulants and
the difference between proton and anti-proton cumulants are larger in low energies than in high
energies. The cumulants of net-proton distributions closely follow the proton cumulants when
the colliding energy decreases. These observations can be explained as the interplay between the
baryon stopping and pair production of protons and anti-protons. At high energies, protons and
anti-protons mainly come from the pair production and the number of protons and anti-protons are
very similar. At low energies, the production of protons is dominated by initial baryon stopping and
the number of protons is far higher than the number of anti-protons. The values of the forth order
cumulant (C4) at 7.7 and 11.5 GeV significantly increase in the 0 ∼ 5% and 5 ∼ 10% centrality
bins with respect to the efficiency uncorrected results. The efficiency correction not only affects
the values but also lead to larger statistical errors, as error(Cn)∼ σ n/εα , where the σ in numerator
is the standard deviation of the particle distributions and the denominator ε is the efficiency number,
α is a positive real number [20].

In Fig. 3, we present the energy dependence of efficiency-corrected cumulant ratios κσ 2 =
C4/C2 and Sσ = C3/C2 of net-proton distributions in Au+Au collisions at different centralities
(0∼ 5%,5∼ 10%,30 ∼ 40%,70 ∼ 80%). For peripheral (70 ∼ 80%) and mid-central (30∼ 40%)
collisions, the κσ 2 values are close to unity and the Sσ show strong monotonic increase when
the energy decreases. For 0 ∼ 5% most-central collisions, the values of κσ 2 are close to unity at
energies above 39 GeV, while below 39 GeV, they start to deviate from unity and show significant
deviation below unity around 19.6 and 27 GeV. Finally, they shows a strong increase and stay above
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Unfolding makes huge difference in new STAR data!

K1

K2

K3

K4



HADES sees similar behavior  
(J. Stroth, INT, Oct 2016)

19

Comparison to STAR

• HADES data from unfolding method
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Let’s take the preliminary STAR data at face value



From Cumulants to Correlations

21

2

II. CUMULANTS AND CORRELATIONS FUNCTIONS

VK: VK: need to check if the ”coupling” is expected to increase with order of cumulant at critical
point. I thought so, this is where the scaling with the correlation length comes from. VK: I think
for this paper we should skip this discussion and concentrate on the signs, centrality and rapidity
dependence

Let us start by introducing the correlation functions, beginning with two particles. The two particle density for
particles with momenta p

1

and p
2

, fl
2

(p
1

, p
2

), is given by
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2
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), (1)

where fl
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(p) refers to the one particle density, and C
2

(p
1

, p
2

) represents the two-particle correlation function. Inte-
grating over the momenta we get
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so that in the absence of correlations, C
2

= 0, the particle number follows Poisson statistics,
+
N2

,
≠ ÈNÍ2 = ÈNÍ. In

general the two particle density and correlation function depend on the momenta of both particles. In the following,
we will restrict ourselves to correlations in rapidity and adopt the following notation
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and similarly for higher order particle densities and correlation functions.
The three particle density depends on the one and two-particle densities as well as the two and three-particle

correlation functions
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and is related to the third order factorial moment F
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= ÈN (N ≠ 1) (N ≠ 2)Í via
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where C
3

is the integrated genuine three-particle correlation function. Similarly the higher order factorial moment
are given by1
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At the same time, the particle number cumulant, Kn, can be expressed in terms of the factorial moments [6],
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1
See, e.g., Ref. [XXX] for explicit definitions of higher order correlation functions.

Cumulants

C2: Correlation Function



From Cumulants to Correlations 
(no anti-protons)

22

Simple Algebra leads to relation between correlations Cn and Kn

Defining integrated correlations function

or vice versa

3

where ”N = N ≠ ÈNÍ. Formulas for the higher order cumulants can be found in Ref. [XXX].
Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F

1
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Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
sity/multiplicity is removed

cn (y
1

, ..., yn) = Cn (y
1

, ..., yn)
fl

1

(y
1

) · · · fl
1

(yn) , (17)

which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as
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2
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2

)] . (18)

The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain

Ck = ÈNÍk
ck (19)

where ÈNÍ =
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Using above definition we can write
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(23)

and analogously for K
5

and K
6

.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity



Correlations near the critical point
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M. Stephanov, 0809.3450, PRL 102

Scaling of Cumulants Kn with correlation length 

Cumulants from Correlations

Consequently:

Correlations Cn pick up the most divergent pieces of cumulants Kn!



Preliminary Star Data 
(X. Luo, PoS Cpod 2014 (019))
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Significant four particle correlations! 

Four particle correlation dominate K4  
for central collisions at 7.7 GeV 

Based on prelim. STAR data

Energy Dependence of Moments of Net-Proton and Net-Charge Multiplicity Distributions at STAR
Xiaofeng Luo
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Figure 3: (Color online) Energy dependence of efficiency corrected cumulant ratios κσ2 = C4/C2 and
Sσ =C3/C2 of net-proton distributions in Au+Au collisions at different centralities (0∼ 5%,5∼ 10%,30∼
40%,70∼ 80%).

unity at 7.7 GeV. The Sσ at 0∼ 5% centrality bin shows a large drop at 7.7 GeV. One may note that
we only have statistical errors shown in the figure, which are still large due to limited statistics. The
systematical errors, which are dominated by the efficiency correction and the particle identification,
are being studied.

Large acceptance is crucial for fluctuations of conserved quantities in heavy-ion collisions
to probe the QCD phase transition and critical point. The signals for the phase transition and/or
CP will be suppressed with small acceptance. In the Fig. 4, we show the energy dependence
of efficiency corrected κσ 2 =C4/C2 and Sσ /Skellam of net-proton distributions with various pT
and rapidity range for 0 ∼ 5% most central Au+Au collisions. The Skellam baseline assumes the
protons and anti-protons distribute as independent Poisson distributions. It is constructed from the
efficiency-corrected mean values of the protons and anti-protons. It is expected to represent the
thermal statistical fluctuations of the net-proton number [24]. The κσ 2 and Sσ /Skellam are to be
unity for Skellam baseline as well as in the Hadron Resonance Gas model. In the two upper panels
of Fig. 4, when we gradually enlarge the pT or rapidity acceptance, the values of κσ 2 show a small
changes close to unity at energies above 39 GeV, while below 39 GeV, more pronounced structure
is observed for a larger pT or rapidity acceptance. In the two lower panels of Fig. 4, when we
enlarge the pT or rapidity acceptance, the Sσ /Skellam shows strong suppression with respect to
unity and monotonically decrease with energy. In contrast to κσ 2, the significantly increase above
unity at 7.7 GeV is not observed in Sσ /Skellam, but shows strong suppression below unity. The
published results are shown as solid red triangles in the figure.

The efficiency-corrected net-charge results are shown in Fig. 5. We did not observe non-
monotonic behavior for Sσ and κσ 2 within current statistics for net-charge. The expectations from

7



Hades see even stronger 
correlations

25

Particle Correlations
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Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F
1

K
2

= ÈNÍ + C
2

, (11)
K

3

= ÈNÍ + 3C
2

+ C
3

, (12)
K

4

= ÈNÍ + 7C
2

+ 6C
3

+ C
4

, (13)
and vice versa

C
2

= ≠ ÈNÍ + K
2

, (14)
C

3

= 2 ÈNÍ ≠ 3K
2

+ K
3

, (15)
C

4

= ≠6 ÈNÍ + 11K
2

≠ 6K
3

+ K
4

. (16)
Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few

more remarks concerning these correlation functions.
It should be clear from (14)-(16) that as we approach the critical point Cn is dominated by Kn which scales with

the highest power of the correlation length › [2]. Thus, following [2], C
2

≥ ›2, C
3

≥ ›4.5, and C
4

≥ ›7 close to the
critical point.

Frequently in the literature, see, e.g., Ref. [13], one refers to correlation function where the trivial dependence on
the particle density/multiplicity is removed

cn (y
1

, ..., yn) = Cn (y
1

, ..., yn)
fl

1

(y
1

) · · · fl
1

(yn) , (17)

which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as
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The reduced correlation functions will prove helpful when studying for instance the centrality dependence of the
correlations. Integrating Eq. (17) over rapidity we obtain

Ck = ÈNÍk
ck, (19)

where ÈNÍ =
´
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Using above definition we can write
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Finally we should point out that direct relation between correlation functions and cumulants can not be established

if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix.

A. Comments

Before we analyze the existing data several comments are warranted.

(i) First it would be interesting to see how the correlation functions Cn and couplings cn scale with multiplicity
if the correlations originate from several independent sources of correlations, e.g., from resonances/clusters or
when A+A is a simple superposition of elementary p+p interactions. This will be useful when studying the
centrality dependence of the correlations.
Suppose we have Ns sources of particles, each characterized by the multiplicity distribution P (ni). The final
multiplicity distribution is given by

P (N) =
ÿ

n1,n2,...,nNs

P (n
1

)P (n
2

) · · · P (nNs)”n1+...+nNs ≠N . (24)
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energies above 19.6 GeV, the values of v2
3{2} linearly increase with the log(psNN ) for all of the four centralities.

Figure 5 right shows psNN dependence of the v2
3{2} scaled by the charged particle multiplicity per participant pair

nch,PP =
2

Npart
dNch/d⌘ for three centralities. Experimentally, the nch,PP has been measured and monotonically increase

with psNN [23], which can be related to the energy density of the system. The v2
3{2}/nch,PP shows a local minimum

around 20 GeV, which is the consequence of a relatively flat trend for v2
3{2} and monotonically increasing trend for the

nch,PP in the energy range 7.7 <psNN< 20 GeV. Physics wise, the v2
3{2}/nch,PP should reflect the ability of the system

to convert the initial geometry fluctuations to the final state. Thus, the local minimum in v2
3{2}/nch,PP could indicate

an anomalous low pressure inside the matter created in the collisions near psNN=20 GeV, where a minimum is also
observed for the slope of net-proton directed flow. Apparently, these observations can be interpreted by softening of
equation-of-state due to presence of the first order phase transition. However, conclusions only can be made after
carrying out careful theoretical and model studies for the dynamical evolution of the system including the physics of
first order phase transition at finite µB.

2.5. Net-proton number fluctuations
Fluctuations of conserved quantities, such as baryon (B), charge (Q) and strangeness (S) numbers, have been

proposed as a sensitive probe to search for the signature of the QCD critical point in heavy-ion collisions [24]. These
fluctuations are sensitive to the correlation length (⇠) [24] and can be directly connected to the susceptibility of the
system computed in theoretical calculations, such as Lattice QCD [25, 26, 27] and HRG models [28]. The STAR
experiment has measured various order fluctuations of net-proton (Np � Np̄, proxy for net-baryon), net-charge and
net-kaon (proxy for net-strangeness) numbers in the Au+Au collisons at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and
200 GeV [29, 30, 31].
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Figure 6. (Color online) Left: Energy dependence of �2 of net-proton distributions and Middle: S� divided by Skellam (Poisson) expeca-
tions for 0-5%, 5-10% and 70-80% centralities of Au+Au collisions at psNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, 200 GeV measured by STAR.
The experimental data is compared with Poisson expectations (dashed lines) and the UrQMD transport model calculations (shade bands ). The
statistic and systematic errors are plotted as vertical bar and brackets, respectively. Right: A schematic sketch for theoretically predicted neg-
ative(red)/positive(blue) critical contribution regions for �2 near the QCD critical point and possible chemical freeze-out regions for Au+Au
collisions 14.5 (green), 16.5 (purple) and 19.6 GeV (black).

Figure 6 left shows the e�ciency corrected �2 of net-proton distributions as a function of psNN for 0-5%, 5-10%
and 70-80% centralities of Au+Au collisions measured by STAR [31, 32]. The protons and anti-protons numbers
are measured with transverse momentum 0.4 < pT < 2 GeV/c and at mid-rapidity |y| < 0.5. The �2 shows a clear
non-monotonic variation with psNN for 0-5% centrality with a minimum around 20 GeV. Above 39 GeV, the values of
�2 are close to the unity for both central and peripheral collisions and deviate significantly below unity for the 0-5%
most central collisions at 19.6 and 27 GeV, then become above unity at 0-5% centrality in the energies below 19.6
GeV. Another intriguing structure observed in psNN dependence for the �2 of net-proton distributions in Au+Au
collisons is the so called ”Oscillation”. Namely, the oscillation is a structure that represents two observations, the so
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where ”N = N ≠ ÈNÍ. Formulas for the higher order cumulants can be found in Ref. [XXX].
Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F
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Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
sity/multiplicity is removed

cn (y
1

, ..., yn) = Cn (y
1

, ..., yn)
fl
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1

) · · · fl
1

(yn) , (17)

which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as
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The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain

Ck = ÈNÍk
ck (19)

where ÈNÍ =
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Using above definition we can write
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and analogously for K
5

and K
6

.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity
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The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain
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Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity

For example two particle correlations:

Independent sources such as resonances, cluster, p+p:
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C3

C4

7.7 GeV 19.6 GeV
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short range correlations:

Assume:

Long range correlations:



Preliminary Star data are consistent 
with long range rapidity correlations

31

7.7 GeV 
central

STAR preliminary

19.6 GeV 
central

STAR preliminary
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Note: anti-protons are non- negligible above 19.6 GeV

Based on prelim. STAR data



Can we understand these 
correlations?

• Two particle correlations can be understood by simple 
Glauber model + Baryon number conservation 

• No way to get even close to the data for four particle 
correlations!

33

6

where b = 40 for
p
s = 7.7 GeV. Our conclusions are not sensitive to small variations of b and changing the exponent

from 1.25 to 1. The results are presented in Fig. 3 by the solid curves. The dashed curves correspond to calculations
without volume (N

part

) fluctuations (no VF). The symbols represent the correlations after averaging over bins in
centrality of 5%, i.e. 0 � 5%, 5 � 10% etc. Only the five most central points are shown. For less central collisions,
the centrality averaging does not alter our results and points fall right on the solid lines. Clearly, the contribution
originating from N

part

fluctuations is important for the two particle correlation, C
2

; there is also some but less
significant e↵ect of N

part

fluctuations on the three particle correlation C
3

in central collisions. On the other hand,
when compared to the STAR data, fluctuations of wounded nucleons are all but irrelevant for the four particle
correlation, C

4

. In our model calculation, C
4

is negative for o↵-central collisions and it gets positive for large N
part

.
After averaging over centrality bins, the model predicts around �0.3 for C

4

while the analysis of the preliminary
STAR data gives ⇠ 170. Also, as already mentioned, the strong oscillations exhibited in C

3

and C
4

at large N
part

disappear after averaging over centrality bins. Obviously our model of independent stopping together with baryon
number conservation clearly fails to explain the preliminary STAR data, reported in Ref. [51] (see Fig. 1 therein).

FIG. 3. Multi-particle correlations Cn in Au+Au collisions at
p
s = 7.7 GeV. The leading terms, where fluctuations of the

number of wounded nucleons are not present, are denoted by “no VF”. Also shown as circles, triangles and squares are the
results for the five most central bins with a width of 5% of centrality.

Before we close this section, let us make a few more remarks. First, the results without the number of wounded
nucleon fluctuations presented in this section can be verified analytically. At a fixed N

part

, Eq. (9) reduces to

H(z;N
part

) = (1� p+ pz)Npart , (20)

and using Eq. (3) we obtain

C
2

= �p2N
part

, C
3

= 2p3N
part

, C
4

= �6p4N
part

. (21)

Since p < 1 this explains the relative magnitude of the correlation functions. Next, in our analysis we assumed that
each nucleon is stopped in �y with the same probability p. This is rather unphysical since nucleons that collide
once are expected to have significantly smaller p than nucleon from the centers which collide several times. However,
as long as we have independent stopping of the nucleons, individual stopping probabilities do not really change
our conclusions. Suppose that each nucleon is characterized by its own stopping probability, p

(i), i = 1, ..., N
part

.
Neglecting N

part

fluctuations we obtain at a given N
part

5

H(z;N
part

) =
YNpart

i=1

(1� p
(i) + p

(i)z), (22)

which obviously reduces to Eq. (20) if pi = p. Calculating Ck we observe that it is enough to replace N
part

pn !
P

i p
n
(i)

in Eq. (21) and thus the signs of Ck do not change. We conclude that this e↵ect cannot lead to a large and positive
C

4

as seen in the STAR data.
The corollary of this section is the following. The two-particle correlations obtained in our model of independent

nucleon stopping together with baryon-number conservation and fast isospin equilibration are of the same magnitude

5 The generating function of independent sources is given by a product of its generating functions.

Based on prelim. STAR data
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Can we understand these 
correlations?

• Three and four particle correlations require lots of “fantasy”… 

• For example, if about 40% of the nucleons come in 8-nucleon 
clusters one can get near the data…
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FIG. 4. Integrated multi-particle correlations Cn in the model where particles are correlated in pairs (left) and quartets (right)
as a function of the probability for a pair (p2) or a quartet (p4) to end up in the rapidity bin. For larger values of p2 and p4
we obtain large values of C3 and C4. See the text for further explanation.

The multi-particle correlations Ck are given by the appropriate derivatives (at z = 1) of

C(z;N
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) = ln [H(z;N
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)]
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resulting in
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Taking N
part

= 350, hNi = 0.12N
part

= 42 and M = 8 (8 pairs of protons) we obtain the relation between p
1

and p
2

.
In Fig. 4 (left) we plot 7C

2

, 6C
3

and C
4

as a function of p
2

. We observe that for p
2

> 0.5 both C
3

and C
4

have the
right signs and can reach substantial values.

The right panel of Fig. 4 shows the results of an analogues calculation where protons come in quartets instead of
pairs. In this case
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where M in this case is the number of proton quartets. In this calculation we use M = 4 so that the number of
correlated protons is the same as in the previous case. We observe that the signal for p

4

> 0.7 is much larger, and
all Cn agree qualitatively with the STAR data. We have also verified that the signal increases even further if protons
are clustered in even larger multiplets.

V. DISCUSSION AND CONCLUSIONS

Let first summarize the main findings of this paper.

• We have studied the proton correlations at low energies where proton-antiproton pair production can be ne-
glected. To this end we developed a minimal model which is based on independent stopping of nucleons, baryon
number conservation and fast isospin-exchange. We find that this model qualitatively reproduces the two-
proton correlations seen in the preliminary STAR data, while it underpredicts the magnitude of the four-proton
correlations by almost three orders of magnitude.

STAR C4

STAR C3

Plenty of room for creative ideas!



Summary
• Fluctuations sensitive to phase structure:  

- measure “derivatives” of EOS 
• Measurements are difficult 
• Cumulants contain information about correlations 
• Preliminary STAR data: 

- Significant four particle correlations at 7.7 and 11.5 GeV 
- Dip in K4/K2 at 19.6 GeV is due to negative two-particle 

correlations 
- Centrality dependence (at 7.7 GeV) indicates independent 

sources for Npart < 150 and “collective” correlations for 
Npart>200. 

- At about the same centrality three- and four particle 
correlations change sign! 
•New dynamics?
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Summary
• Preliminary STAR data continued: 

- For central 7.7 and 11.5 GeV two and three particle 
correlations are negative and four particle are positive. 
•This would rule out a large area around the critical point 

• The STAR data are still preliminary! 
• Other more mundane effects may contribute  

- Fluctuations of system size (Npart) 
•May explain 2-particle correlations 
•Fail to reproduce the magnitude of 3- and 4- particle correlations 

• Understanding 3- and 4 particle correlations requires 
“desperate measures”! 
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