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Col | inear fa ctorization To separate a perturbatively cz_:llculable from
the universal in hadron scattering.

PDFs are related to the structure
of the hadrons, universal to the
scattering process

fa(xl) PL) fb (XZ) H) 6a,bﬂn(xlp1 y X2P235 H)

Oh, ,hzan(PhPZ) = Z J dX] dxz

a,b

Gl Py P, 1) = JdCD(pa,pb = {Ph) [ IMapon (Pas Po = (P WP O(Pay Poy {Pn)

Phase space (includes | Matrix element (squared)‘ Observable, imposes
spin/color summation) contains model parameters,| phase space cuts
governs the kinematics governs the dynamics
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Maciuta, Szczurek,

Four jets with k1-factorization K Serne. Avk 2016
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e AS is the azimutal angle between the sum of the two
hardest jets and the sum of the two softest jets.

e This variable has no distribution at LO in collinear
factorization: pairs would have to be back-to-back.

e ky-factorization allows for the necessary momentum inbalance.




Factorization for hadron scattering

General formula for cross section with 7t* € {g*, q*, q*}:

do(hi(p1)ha(p2) = Y) = Z J d*ky Pra(ks) J A"k, Py (ka) Ao (70, (ki) 7g (ka) — Y)

a,b

1
d
Collinear factorization: P;4(k) = J ?X fia(x, 1) 8 (k — X Pi)
0

d?kt J‘ dx

kr-factorization: P; (k) = J - o Fialx, krl, 1) 5 (k — xpi — kr)

0

e The parton level cross section d&(ﬂ’&(kﬂﬂ{j(kz) — Y) can
be calculated within perturbative QCD.

e The parton distribution functions f; , and J; , must be mod-
elled and fit against data.

e Unphysical scale | is a price to pay, but its dependence is
calculable within perturbative QCD via evolution equations.




Factorization for hadron scattering

General formula for cross section with 7t* € {g*, q*, q*}:

do(h(p)alpa) =+ ¥) = 3 [ a'la 9ralir) | s Panlie) da(m (k) k) = V)

a,b

Tdx 4
Collinear factorization: P; 4(k) = J o fia(x, ) 8" (k —xpi)

0

. . dsz ! dx 4
kr-factorization: P; (k) = - - Fialx, [krlyp) 8" (k —xpi — kr)
0
P2 ‘

. 2
o= Jd@U,Z = 3,4,...,n) | M(1,2,...,0)]" O(p3, P4y - - -, Pn) k2

phase space includes summation over color and spin
squared amplitude calculated perturbatively K

observable includes phase space cuts, or jet algorithm P1 ‘




Gauge invariance

In order to be physically relevant, any scattering amplitude following the constructive
definition given before must satisfy the following

Freedom in choice of gluon propagator:

=l N kK
S [ R R
K2 |9 on TV E R

Ward identity:

.musu(k) — "omg‘uku =0

e Only holds if all external particles are on-shell.
e kr-factorization requires off-shell initial-state momenta k" = p* + k.

e How to define amplitudes with off-shell intial-state momenta?
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Weyl spinors for light-like momenta
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Schouten identity
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BCFW recursion [amial amplitudes

Multi-gluon amplitudes have much simpler expressions than one would expect from the
Feynman graphs, in particular the MHV amplitudes:

(pipy)*
(P1P2)(P2p3) -+ * (Pn-2Pn-1) (Pn-1Pn) (PnP1)

A{7,j7, (the rest)™) =

BCFW recursion allows for easy construction of such simple expressions

e it is a recursion of on-shell amplitudes, rather than off-shell Green functions
e it is most efficiently applied as a recursion of expressions

e it is easily proven using Cauchy's theorem

For a rational function f of a complex variable z which vanishes at infinity, we have

dz f(z) rRoeo Residue(f Q z = z;)
%R ( )

2 z - —Zi
1

This is applied to amplitudes by turning them into functions of a complex variable by
analytical continuation of the momenta to complex values.



BCFW recursion [amial amplitudes

Amplitudes have poles at kinematical channels, and the residues factorize into amplitudes.

Pi Pit1

Kt=pitpy+-+pf
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BCFW recursion [amial amplitudes

Amplitudes have poles at kinematical channels, and the residues factorize into amplitudes.

Pi Pit+1
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= —piy— - — Py —pht+ze
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2py+---+pi)-e



BCFW recursion [amial amplitudes

Britto, Cachazo,
Feng, Witten 2005

Amplitudes have poles at kinematical channels, and the residues factorize into amplitudes.
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Amplitudes with off-shell gluons

n-parton amplitude is a function of n momenta k;, ka, ..., ky
and n directions p1,Pay---,Pn
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Amplitudes with off-shell gluons

n-parton amplitude is a function of n momenta ky, k..., k,
and n directions p1, P2, ..., Pn, satisfying the conditions
Ki+KkKy+--+kh =0 momentum conservation
pi=pi=---=p- =0 light-likeness
Pir-ki=prky=-=pn-ky=0 eikonal condition

With the help of an auxiliary four-vector g* with q*> = 0, we define

-k
Ki(q) = K* —x(q)p* with x(q) = 1=
q-p
Construct kf explicitly in terms of p* and g*:
n
* o <p[|v %q] = <?I}<h>a]
K (q) B B e ith P ap
2 2 e _ (abyip] . _ (plKid]
(ap) [pal
k? = —kk* is independent of g, but also individually k and k* are independent of g*.



BCFW recursion [aeEl amplitudes

The BCFW recursion formula becomes

L s
2 :::‘:::n—] = E E Ai,h
i=2 h=+,—

7 R
i i+1
. h 1 —h
Al,h - . K%,i

“On-shell condition” for “off-shell” gluons: p; - ki =0

AvH 2014
AvH, Serino 2015



SO AT c[eIW for off-shell amplitudes

The BCFW recursion formula becomes

« . n_z
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1

o

“On-shell condition” for “off-shell” gluons: p; - ki =0



SO AT c[eIW for off-shell amplitudes

The BCFW recursion formula becomes
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Example of a 4-gluon amplitude

-A“*)zia 3*)4+) -



Example of a 4-gluon amplitude

(13)°[13)°
(34) (A1) (1[Ks + Pal3)(3[Kr + Pal1]132](21]
+1 (12)3[43)° +1 (23)3114)3
Kiks (2[K[41(T1Ks + Pal3] (ks +pa)?  kiki 2K AIGIK + Bal 1l (ke + pa)?

-A“*)zia 3*)4+) -

e Eventual matrix element needs factor kik3 = |k;[%[K;|°.
This must not be included at the amplltude level not to spoil analytic structure.

e Last two terms dominate for |k;| — 0 and |k;|] — 0, and give the on-shell helicity
amplitudes in that limit.

mvgiyAﬂm%TO].mrz 37.47) + 1A(1+z3 47)

K1 K3 K1 K3

e Coherent sum of amplitudes becomes incoherent sum of squared amplitudes via angular
integrations for kit and kst.

29 |
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Amplitude as embedding Al (il [Reitio B0

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.
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Amplitude as embedding

AvH, Kutak, Salwa 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

In agreement with the effective action approach of

Lipatov 1995, Antonov, Lipatov, Kuraev, Cherednikov 2005
J| Lipatov, Vyazovsky 2000, Nefedov, Saleev, Shipilova 2013
and the Wilson-line approach of =0 ——
Kotko 2014 v




KATIE https://bitbucket.org/hameren/katie

e parton level event generator, like ALPGEN, HELAC, MADGRAPH, etc.

e arbitrary processes within the standard model (including effective Hg) with several
final-state particles.

e 0, 1, or 2 off-shell intial states.
e produces (partially un)weighted event files, for example in the LHEF format.

e requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids,
or with TMDIib Hautmann, Jung, Kramer, Mulders, Nocera, Rogers, Signori 2014.

e a calculation is steered by a single input file.

e employs an optimization stage in which the pre-samplers for all channels are optimized.
e during the generation stage several event files can be created in parallel.

e can generate (naively factorized) MPI events.

e event files can be processed further by parton-shower program like CASCADE.



Ngroup
Nfinst

[}
w =

process = g u => mut+ mu- u

process = g u”~ -> mu+ mu- u

process = g d -> mu+ mu- d
process = g 47 -> mu+ mu- d”
lhaSet = MSTW2008nlo68cl

offshell =
tmdTableDir
tmdpdf = g
tmdpdf = u
tmdpdf = u”
tmdpdf = d
tmdpdf = d~
tmdpdf = s
tmdpdf = s~
tmdpdf = ¢
tmdpdf = c”
tmdpdf = b
tmdpdf = b~
Nflavors =
helicity =
Noptim = 1,
Ecm = 7000
Esoft = 20

10

= /home/user0/kTfac/tables/krzysztof02/

KMR_gluon.dat
KMR_u.dat
KMR_ubar.dat
KMR_d.dat
KMR_dbar.dat
KMR_s.dat
KMR_sbar.dat
KMR_c.dat
KMR_cbar.dat
KMR_b.dat
KMR_bbar.dat

sampling
000,000

factor =
factor =

factor

factor =

Example steering file:

PP — 1 j in the forward direction

[ S

groups =
groups =

groups

groups =

N

pNonQCD =

pNonQCD
pNonQCD
pNonQCD

n
NN NN
o O O O
o O O o

cut
cut
cut
cut
cut
cut
cut
cut
cut
cut
cut
cut =
cut =
scale
mass =
mass =

mass =
mass =
switch
switch
switch

{deltaR|1,3|} > 0.
{deltaR|2,3|} > 0.

4
4

{pTI11} > 20
{pTI21} > 20

{pseudoRap|1]}
{pseudoRap|2]}
{pseudoRap|1|}
{pseudoRap|2|}

A ANV V

IO
o ;oo

{mass|1+2|} > 60
{mass|1+2|} < 120
{pTI31} > 20
{rapidityl|3|} > 2.0
{rapidityl|3l} < 4.5
= ({pTI3I}+{pT|1+2|}+91.1882D0) /3

I o = = N

switch =

switch
coupli

ng

91.1882 2.4952

80.419 2.21
125.0 0.00429
173.5

withQCD Yes

withQED Yes
withWeak Yes
withHiggs No

withHG No

= Gfermi 1.16639d-5



KATIE https://bitbucket.org/hameren/katie

e has been used in several studies
— Four-jet production in single- and double-parton scattering within high-energy
factorization, Kutak, Maciula, Serino, Szczurek, AvH 2016
— Associated production of D-mesons with jets at the LHC, Maciula, Szczurek 2017

— Towards tomography of quarkgluon plasma using double inclusive forward-central
Jets in PbPb collision, Deak, Kutak, Tywoniuk 2017

— Single- and double-scattering production of four muons in ultraperipheral PbPb
collisions at the Large Hadron Collider, AvH, Kusek-Gawenda, Szczurek 2017

e covers complete parton-level phase space; no deformation of final-state momenta re-
quired when interfacing with initial-state parton shower

— Calculations with off-shell matrix elements, TMD parton densities and TMD
Parton showers, Bury, AvH, Jung, Kutak, Sapeta, Serino in preparation

e one can use an arbitrary initial-state parton shower and re-weight events

e can be used in “on-shell” mode, and is then equivalent to, say, tree-level MADGRAPH
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Off-shell one-loop amplitudes

Initial steps have already been taken in the parton reggeization approach employing Lipa-
tov's effective action.

Hentschinski, Sabio Vera 2012

Chachamis, Hentschinski, Madrigal, Sabio Vera 2012

Nefedov, Saleev 2017

The main problem is caused by linear denominators in loop integrals

d4—2€€

and the divergecies they cause. In particular one would like to use a regularization that

e is manifestly Lorentz covariant
e manifestly preserves gauge invariance
e can be used incombination with dimensional regularization

e is practical



Off-shell one-loop amplitudes

kH:po_H# p%:/\pu_}_(xqu_{: Bkl’l_l

A\

pas = kM —pi

4

where p, q are light-like with p-q > 0, where p-k1 = q-ky =0, and where

Lo B B 1 pA =P =0
Alp+q)* 1+/T—x/A ph +ph, = xp* + ki
for any value of the parameter /. Auxiliary quark propagators become eikonal for A — oo:
175A + K o i175

+0(AT)

A+ K2 2pK



Off-shell one-loop amplitudes

kH = xpH + Ky pi = Ap* + agh + BKf

A
.
.

—

where p, q are light-like with p-q > 0, where p-kt = q-k1 =0, and where

o = _sz% B pzA - p%’ =0
Alp+q)?

1
1+ /T=x/A

for any value of the parameter /. Auxiliary quark propagators become eikonal for A — oco:

ip . PatL+K .
K parerkr O

Pa +Pa =xp* + Ky

e /\-parametrization provides natural regularization for linear denominators in loop inte-
grals.

e Taking this limit after loop integration will lead to singularities log/\.



Off-shell one-loop amplitudes

kH = xpH + Ky pi = Ap* + agh + BKf

A
.
.

—

Integrand-based reduction methods cannot be applied with naive limit A — oo on inte-
grand. For example, the integrand of the following graph (Feynman gauge) vanishes in
that limit, but the integral does not:

A+ K Zood (Y [ qacey PV L+ AP + Ky, lp)
%999(9 _Jd { (0 + Ap + K)2

1 2p-K
=2p-K|logA— - —1+log | — Q)
p [og . +og( 2 )+ (¢)

But (ply"py.lp! =0, so naive power counting in /A does not work.




Behavior of the scalar integrals

d*—2¢¢ alog’A+blogA+c+0 (A1)
,[QZ(E—I—K])Z(H—/\p—|—K2)2(€+/\p+K3)2 B A2
d+2e¢ alog’A +blogA+c+ 0 (A1)
J O+ K2+ K2+ Ap+K3)2 A
di—2¢¢ alog’A+blogA+c+0O (A1)
J€2(€+K1)2(€+/\p+Kz)2 - A

d4—25€ :
—blogA +c+O(A
JEZ((H—/\erKﬂz og/A+c+0(AT)



Conclusions

Tree-level parton-level event generation is
the easy part of kr-dependent factorization.



