k_T-dependent factorization from an amplitude perspective

Andreas van Hameren Institute of Nuclear Physics Polish Academy of Sciences Kraków

08-12-2017, Kraków

This work was supported by grant of National Science Center, Poland, No. 2015/17/B/ST2/01838.

Collinear factorization

To separate a perturbatively calculable from the universal in hadron scattering.

Forward-central dijet decorrelations pp ightarrow 2j

AvH, Kutak, Kotko, Sapeta 2014

Forward-central dijet decorrelations pp $\rightarrow 2j$

1000

0 0.5 1 1.5 2

2.5

Δφ

3

Forward-central dijet decorrelations pp $\rightarrow 2j$

Forward-central dijet decorrelations pp -

Hybrid factorization:

$$d\sigma_{pp\to X} = \int dk_T^2 \int dx_A \int dx_B \sum_b \mathcal{F}_{g^*}(x_A, k_T, \mu) f_b(x_B, \mu) d\hat{\sigma}_{g^*b\to X}(x_A, x_B, k_T, \mu)$$

$$k_1^{\mu} = x_A P_A^{\mu} + k_T^{\mu} \qquad P_A^2 = 0 \qquad k_1^2 = k_1^2$$
$$k_2^{\mu} = x_B P_B^{\mu} \qquad P_B^2 = 0 \qquad k_2^2 = 0$$

Forward-central dijet decorrelations pp –

Hybrid factorization:

$$d\sigma_{pp\to X} = \int dk_T^2 \int dx_A \int dx_B \sum_b \mathcal{F}_{g^*}(x_A, k_T, \mu) f_b(x_B, \mu) d\hat{\sigma}_{g^*b\to X}(x_A, x_B, k_T, \mu)$$

$$\begin{aligned} k_1^{\mu} &= x_A P_A^{\mu} + k_T^{\mu} & P_A^2 = 0 & k_1^2 = k_T^2 \\ k_2^{\mu} &= x_B P_B^{\mu} & P_B^2 = 0 & k_2^2 = 0 \end{aligned}$$

 $x_B \gg x_A \qquad \left|\vec{p}_1 + \vec{p}_2\right| = \left|\vec{k}_T\right|$

Four jets with k_T-factorization

√s = 7 TeV 4 jets X CMS data 2nd jet: p_ > 50 GeV ijet: p_ > 20 GeV [rad⁻¹] SPS + DPS 1/σ dσ/ΔS SPS HEF DPS HEF 10⁻¹ 10⁻² 0.5 1.5 2 25 3 ΔS [rad]

- ΔS is the azimutal angle between the sum of the two hardest jets and the sum of the two softest jets.
- This variable has no distribution at LO in collinear factorization: pairs would have to be back-to-back.
- k_T -factorization allows for the necessary momentum inbalance.

Factorization for hadron scattering

General formula for cross section with $\pi^* \in \{g^*,q^*,\bar{q}^*\}$:

 $d\sigma(h_{1}(p_{1})h_{2}(p_{2}) \to Y) = \sum_{a,b} \int d^{4}k_{1} \mathcal{P}_{1,a}(k_{1}) \int d^{4}k_{2} \mathcal{P}_{2,b}(k_{2}) d\hat{\sigma}(\pi_{a}^{*}(k_{1})\pi_{b}^{*}(k_{2}) \to Y)$

Collinear factorization: $\mathcal{P}_{i,a}(k) = \int_0^1 \frac{dx}{x} \mathbf{f}_{i,a}(\mathbf{x}, \mathbf{\mu}) \, \delta^4(k - x \, p_i)$

k_T-factorization: $\mathcal{P}_{i,a}(k) = \int \frac{d^2 \mathbf{k}_T}{\pi} \int_0^1 \frac{dx}{x} \mathcal{F}_{i,a}(x, |\mathbf{k}_T|, \mu) \,\delta^4(k - x \, p_i - k_T)$

- The parton level cross section $d\hat{\sigma}(\pi_a^*(k_1)\pi_b^*(k_2) \to Y)$ can be calculated within perturbative QCD.
- The parton distribution functions $f_{i,a}$ and $\mathcal{F}_{i,a}$ must be modelled and fit against data.
- Unphysical scale μ is a price to pay, but its dependence is calculable within perturbative QCD via *evolution equations*.

Factorization for hadron scattering

General formula for cross section with $\pi^* \in \{g^*, q^*, \bar{q}^*\}$:

 $d\sigma(h_{1}(p_{1})h_{2}(p_{2}) \to Y) = \sum_{a,b} \int d^{4}k_{1} \mathcal{P}_{1,a}(k_{1}) \int d^{4}k_{2} \mathcal{P}_{2,b}(k_{2}) d\hat{\sigma}(\pi_{a}^{*}(k_{1})\pi_{b}^{*}(k_{2}) \to Y)$

Collinear factorization: $\mathcal{P}_{i,a}(k) = \int_0^1 \frac{dx}{x} f_{i,a}(x,\mu) \,\delta^4(k-x\,p_i)$

 $\mathbf{k}_{\mathrm{T}}\text{-factorization:} \quad \mathcal{P}_{\mathrm{i},a}(\mathbf{k}) = \int \frac{\mathrm{d}^{2}\mathbf{k}_{\mathrm{T}}}{\pi} \int_{0}^{1} \frac{\mathrm{d}x}{x} \,\mathcal{F}_{\mathrm{i},a}(x, |\mathbf{k}_{\mathrm{T}}|, \mu) \,\delta^{4}(\mathbf{k} - x \, \mathbf{p}_{\mathrm{i}} - \mathbf{k}_{\mathrm{T}})$

$$\hat{\sigma} = \int d\Phi(1, 2 \to 3, 4, \dots, n) \left| \mathcal{M}(1, 2, \dots, n) \right|^2 \mathcal{O}(p_3, p_4, \dots, p_n)$$

phase space includes summation over color and spin squared amplitude calculated perturbatively observable includes phase space cuts, or jet algorithm

Gauge invariance

In order to be physically relevant, any scattering amplitude following the constructive definition given before must satisfy the following

Freedom in choice of gluon propagator:

$$\begin{cases} -\frac{-i}{k^{2}} \left[g^{\mu\nu} - (1-\xi) \frac{k^{\mu}k^{\nu}}{k^{2}} \right] \\ -\frac{-i}{k^{2}} \left[g^{\mu\nu} - \frac{k^{\mu}n^{\nu} + n^{\mu}k^{\nu}}{k \cdot n} + (n^{2} + \xi k^{2}) \frac{k^{\mu}k^{\nu}}{(k \cdot n)^{2}} \right] \end{cases}$$

Ward identity:

$$\log_{\mu} \epsilon^{\mu}(k) \rightarrow \log_{\mu} k^{\mu} = 0$$

- Only holds if all external particles are on-shell.
- k_T -factorization requires off-shell initial-state momenta $k^{\mu} = p^{\mu} + k_T^{\mu}$.
- How to define amplitudes with off-shell intial-state momenta?

Weyl spinors for light-like momenta

Weyl spinors for light-like momenta

$$|\mathbf{p}] = \begin{pmatrix} L(\mathbf{p}) \\ \mathbf{0} \end{pmatrix} \qquad L(\mathbf{p}) = \frac{1}{\sqrt{|\mathbf{p}_0 + \mathbf{p}_3|}} \begin{pmatrix} -\mathbf{p}_1 + i\mathbf{p}_2 \\ \mathbf{p}_0 + \mathbf{p}_3 \end{pmatrix}$$
$$|\mathbf{p}\rangle = \begin{pmatrix} \mathbf{0} \\ R(\mathbf{p}) \end{pmatrix} \qquad R(\mathbf{p}) = \frac{\sqrt{|\mathbf{p}_0 + \mathbf{p}_3|}}{\mathbf{p}_0 + \mathbf{p}_3} \begin{pmatrix} \mathbf{p}_0 + \mathbf{p}_3 \\ \mathbf{p}_1 + i\mathbf{p}_2 \end{pmatrix}$$

Dual spinors are defined without complex conjugation

$$\begin{bmatrix} \mathbf{p} \\ = ((\mathcal{E}\mathbf{L}(\mathbf{p}))^{\mathsf{T}}, \mathbf{0}) \\ \langle \mathbf{p} \\ = (\mathbf{0}, (\mathcal{E}^{\mathsf{T}}\mathbf{R}(\mathbf{p}))^{\mathsf{T}}) \qquad \qquad \mathcal{E} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ -\mathbf{1} & \mathbf{0} \end{pmatrix}$$

$$\begin{split} |p\rangle[p|+|p]\langle p| &= \not p = \gamma_{\mu}p^{\mu} \\ \langle p||q] &= [p||q\rangle = 0 \\ \langle p||p\rangle &= [p||p] = 0 \\ \not p|p\rangle &= \not p|p] = 0 \quad , \quad \langle p|\not p = [p|\not p = 0 \\ p^{\mu} &= \frac{1}{2}\langle p|\gamma^{\mu}|p] \end{split}$$

$$\langle pq \rangle \equiv \langle p||q \rangle , \quad [pq] \equiv [p||q] \langle qp \rangle = -\langle pq \rangle , \quad [qp] = -[pq] \langle pq \rangle [qp] = 2p \cdot q \langle p|k|q] = [q|k|p \rangle \langle p|r|q] = \langle pr \rangle [rq]$$

Schouten identity

$$\frac{|\mathbf{q}\rangle\langle\mathbf{p}|}{\langle\mathbf{p}\mathbf{q}\rangle} + \frac{|\mathbf{p}\rangle\langle\mathbf{q}|}{\langle\mathbf{q}\mathbf{p}\rangle} + \frac{|\mathbf{q}][\mathbf{p}]}{[\mathbf{p}\mathbf{q}]} + \frac{|\mathbf{p}][\mathbf{q}]}{[\mathbf{q}\mathbf{p}]} = \frac{1}{2}$$

Multi-gluon amplitudes have much simpler expressions than one would expect from the Feynman graphs, in particular the MHV amplitudes:

```
\mathcal{A}(\mathfrak{i}^-,\mathfrak{j}^-,(\mathsf{the\ rest})^+) =
```

Multi-gluon amplitudes have much simpler expressions than one would expect from the Feynman graphs, in particular the MHV amplitudes:

 $\mathcal{A}(i^{-}, j^{-}, (\text{the rest})^{+}) = \frac{\langle p_{i}p_{j}\rangle^{4}}{\langle p_{1}p_{2}\rangle\langle p_{2}p_{3}\rangle\cdots\langle p_{n-2}p_{n-1}\rangle\langle p_{n-1}p_{n}\rangle\langle p_{n}p_{1}\rangle}$

Britto, Cachazo, Feng, Witten 2005

Multi-gluon amplitudes have much simpler expressions than one would expect from the Feynman graphs, in particular the MHV amplitudes:

 $\mathcal{A}(i^{-},j^{-},(\text{the rest})^{+}) = \frac{\langle p_{i}p_{j}\rangle^{4}}{\langle p_{1}p_{2}\rangle\langle p_{2}p_{3}\rangle\cdots\langle p_{n-2}p_{n-1}\rangle\langle p_{n-1}p_{n}\rangle\langle p_{n}p_{1}\rangle}$

BCFW recursion allows for easy construction of such simple expressions

- it is a recursion of on-shell amplitudes, rather than off-shell Green functions
- it is most efficiently applied as a recursion of expressions
- it is easily proven using Cauchy's theorem

For a rational function f of a complex variable z which vanishes at infinity, we have

$$\oint_{\mathsf{R}} \frac{\mathrm{d}z}{2\pi \mathrm{i}} \frac{\mathsf{f}(z)}{z} \stackrel{\mathsf{R} \to \infty}{=} 0 \qquad \Rightarrow \qquad \mathsf{f}(0) = \sum_{\mathrm{i}} \frac{\mathsf{Residue}(\mathsf{f} @ z = z_{\mathrm{i}})}{-z_{\mathrm{i}}}$$

This is applied to amplitudes by turning them into functions of a complex variable by analytical continuation of the momenta to complex values.

Amplitudes have poles at kinematical channels, and the residues factorize into amplitudes.

$$\begin{split} K^{\mu} &= p_{1}^{\mu} + p_{2}^{\mu} + \dots + p_{i}^{\mu} \\ &= -p_{i+1}^{\mu} - \dots - p_{n-1}^{\mu} - p_{n}^{\mu} \end{split}$$

Britto, Cachazo, Feng, Witten 2005

Amplitudes have poles at kinematical channels, and the residues factorize into amplitudes.

$$\hat{K}^{\mu}(z) = p_{1}^{\mu} + p_{2}^{\mu} + \dots + p_{i}^{\mu} + ze^{\mu}$$
$$= -p_{i+1}^{\mu} - \dots - p_{n-1}^{\mu} - p_{n}^{\mu} + ze^{\mu}$$

$$e^{\mu} = \frac{1}{2} \langle p_1 | \gamma^{\mu} | p_n]$$

$$\hat{\mathsf{K}}(z)^2 = 0 \quad \Leftrightarrow \quad z = -\frac{(p_1 + \dots + p_i)^2}{2(p_2 + \dots + p_i) \cdot e}$$

Britto, Cachazo, Feng, Witten 2005

Amplitudes have poles at kinematical channels, and the residues factorize into amplitudes.

$$\hat{K}^{\mu}(z) = p_{1}^{\mu} + p_{2}^{\mu} + \dots + p_{i}^{\mu} + ze^{\mu}$$
$$= -p_{i+1}^{\mu} - \dots - p_{n-1}^{\mu} - p_{n}^{\mu} + ze^{\mu}$$

$$e^{\mu} = \frac{1}{2} \langle p_1 | \gamma^{\mu} | p_n]$$

$$\hat{K}(z)^2 = 0 \quad \Leftrightarrow \quad z = -\frac{(p_1 + \dots + p_i)^2}{2(p_2 + \dots + p_i) \cdot e}$$

$$\mathcal{A}(1^+, 2, \dots, n-1, n^-) = \sum_{i=2}^{n-1} \sum_{h=+,-} \mathcal{A}(\hat{1}^+, 2, \dots, i, -\hat{K}_{1,i}^h) \frac{1}{K_{1,i}^2} \mathcal{A}(\hat{K}_{1,i}^{-h}, i+1, \dots, n-1, \hat{n}^-)$$

$$\mathcal{A}(1^+, 2^-, 3^-) = \frac{\langle 23 \rangle^3}{\langle 31 \rangle \langle 12 \rangle} \quad , \quad \mathcal{A}(1^-, 2^+, 3^+) = \frac{[32]^3}{[21][13]}$$

n-parton amplitude is a function of n momenta k_1, k_2, \ldots, k_n and n *directions* p_1, p_2, \ldots, p_n

n-parton amplitude is a function of n momenta $k_1, k_2, ..., k_n$ and n *directions* $p_1, p_2, ..., p_n$, satisfying the conditions

$k_1^\mu + k_2^\mu + \dots + k_n^\mu = 0$	momentum conservatior
$p_1^2 = p_2^2 = \dots = p_n^2 = 0$	light-likeness
$p_1 \cdot k_1 = p_2 \cdot k_2 = \dots = p_n \cdot k_n = 0$	eikonal condition

n-parton amplitude is a function of n momenta k_1, k_2, \ldots, k_n and n *directions* p_1, p_2, \ldots, p_n , satisfying the conditions

$k_1^\mu+k_2^\mu+\dots+k_n^\mu=0$	momentum conservation
$p_1^2 = p_2^2 = \dots = p_n^2 = 0$	light-likeness
$\mathbf{p}_1 \cdot \mathbf{k}_1 = \mathbf{p}_2 \cdot \mathbf{k}_2 = \cdots = \mathbf{p}_n \cdot \mathbf{k}_n = 0$	eikonal condition

With the help of an auxiliary four-vector q^{μ} with $q^2 = 0$, we define

$$k^{\mu}_{T}(q)=k^{\mu}-x(q)p^{\mu} \quad \text{with} \quad x(q)\equiv \frac{q\cdot k}{q\cdot p}$$

n-parton amplitude is a function of n momenta k_1, k_2, \ldots, k_n and n *directions* p_1, p_2, \ldots, p_n , satisfying the conditions

$k_1^{\mu} + k_2^{\mu} + \dots + k_n^{\mu} = 0$	momentum conservation
$p_1^2 = p_2^2 = \dots = p_n^2 = 0$	light-likeness
$\mathbf{p}_1 \cdot \mathbf{k}_1 = \mathbf{p}_2 \cdot \mathbf{k}_2 = \cdots = \mathbf{p}_n \cdot \mathbf{k}_n = 0$	eikonal condition

With the help of an auxiliary four-vector q^{μ} with $q^2 = 0$, we define

$$k^{\mu}_{T}(q)=k^{\mu}-x(q)p^{\mu} \quad \text{with} \quad x(q)\equiv \frac{q\cdot k}{q\cdot p}$$

Construct k_T^{μ} explicitly in terms of p^{μ} and q^{μ} :

$$k_{T}^{\mu}(q) = -\frac{\kappa}{2} \, \varepsilon^{\mu} - \frac{\kappa^{*}}{2} \, \varepsilon^{*\mu} \quad \text{with} \quad \begin{cases} \varepsilon^{\mu} = \frac{\langle p | \gamma^{\mu} | q]}{[pq]} &, \quad \kappa = \frac{\langle q | \mathcal{K} | p]}{\langle qp \rangle} \\ \varepsilon^{*\mu} = \frac{\langle q | \gamma^{\mu} | p]}{\langle qp \rangle} &, \quad \kappa^{*} = \frac{\langle p | \mathcal{K} | q]}{[pq]} \end{cases}$$

 $k^2=-\kappa\kappa^*$ is independent of $q^\mu,$ but also individually κ and κ^* are independent of $q^\mu.$

AvH 2014 AvH, Serino 2015

The BCFW recursion formula becomes

"On-shell condition" for "off-shell" gluons: $p_i \cdot k_i = 0$

AvH 2014 AvH, Serino 2015

The BCFW recursion formula becomes

"On-shell condition" for "off-shell" gluons: $p_i \cdot k_i = 0$

The BCFW recursion formula becomes

AvH 2014

AvH, Serino 2015

Example of a 4-gluon amplitude

 $\mathcal{A}(1^*, 2^-, 3^*, 4^+) =$

Example of a 4-gluon amplitude

$$\begin{aligned} \mathcal{A}(1^*, 2^-, 3^*, 4^+) &= \frac{\langle 13 \rangle^3 [13]^3}{\langle 34 \rangle \langle 41 \rangle \langle 1| \not k_3 + \not p_4 | 3] \langle 3| \not k_1 + \not p_4 | 1] [32] [21]} \\ &+ \frac{1}{\kappa_1^* \kappa_3} \frac{\langle 12 \rangle^3 [43]^3}{\langle 2| \not k_3 | 4] \langle 1| \not k_3 + \not p_4 | 3] (k_3 + p_4)^2} + \frac{1}{\kappa_1 \kappa_3^*} \frac{\langle 23 \rangle^3 [14]^3}{\langle 2| \not k_1 | 4] \langle 3| \not k_1 + \not p_4 | 1] (k_1 + p_4)^2} \end{aligned}$$

- Eventual matrix element needs factor $k_1^2 k_3^2 = |\kappa_1|^2 |\kappa_3|^2$. This *must not* be included at the amplitude level not to spoil analytic structure.
- Last two terms dominate for $|k_1|\to 0$ and $|k_3|\to 0,$ and give the on-shell helicity amplitudes in that limit.

$$\mathcal{A}(1^*, 2^-, 3^*, 4^+) \xrightarrow{|k_1|, |k_3| \to 0} \frac{1}{\kappa_1^* \kappa_3} \mathcal{A}(1^-, 2^-, 3^+, 4^+) + \frac{1}{\kappa_1 \kappa_3^*} \mathcal{A}(1^+, 2^-, 3^-, 4^+)$$

• Coherent sum of amplitudes becomes incoherent sum of squared amplitudes via angular integrations for \vec{k}_{1T} and \vec{k}_{3T} .

$$p_{A}^{\mu} = \Lambda p_{1}^{\mu} - \frac{\kappa_{1}^{*}}{2} \varepsilon_{1}^{*\mu}$$
$$p_{A'}^{\mu} = -(\Lambda - x_{1})p_{1}^{\mu} - \frac{\kappa_{1}}{2} \varepsilon_{1}^{\mu}$$

AvH, Kutak, Kotko 2013 AvH, Kutak, Salwa 2013

AvH, Kutak, Kotko 2013 AvH, Kutak, Salwa 2013

https://bitbucket.org/hameren/katie

- \bullet parton level event generator, like $\operatorname{Alpgen}, \operatorname{Helac}, \operatorname{Mad}Graph,$ etc.
- arbitrary processes within the standard model (including effective Hg) with several final-state particles.
- 0, 1, or 2 off-shell intial states.

KATIE

- produces (partially un)weighted event files, for example in the LHEF format.
- requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids, or with TMDlib Hautmann, Jung, Krämer, Mulders, Nocera, Rogers, Signori 2014.
- a calculation is steered by a single input file.
- employs an optimization stage in which the pre-samplers for all channels are optimized.
- during the generation stage several event files can be created in parallel.
- can generate (naively factorized) MPI events.
- event files can be processed further by parton-shower program like CASCADE.

```
Ngroup = 1
Nfinst = 3
process = g u -> mu+ mu- u factor = 1
                                           groups = 1 pNonQCD = 2 0 0
process = g u~ -> mu+ mu- u~ factor = 1
                                           groups = 1 pNonQCD = 2 0 0
process = g d -> mu+ mu- d factor = 1
                                           groups = 1 pNonQCD = 2 0 0
process = g d~ -> mu+ mu- d~ factor = 1
                                           groups = 1 pNonQCD = 200
lhaSet = MSTW2008nlo68cl
offshell = 10
tmdTableDir = /home/user0/kTfac/tables/krzysztof02/
tmdpdf = g KMR_gluon.dat
                                                                 cut = {deltaR|1,3|} > 0.4
tmdpdf = u KMR_u.dat
                                                                 cut = {deltaR|2,3|} > 0.4
tmdpdf = u~ KMR_ubar.dat
                                                                 cut = {pT|1|} > 20
tmdpdf = d KMR_d.dat
                                                                 cut = {pT|2|} > 20
tmdpdf = d~ KMR_dbar.dat
                                                                 cut = {pseudoRap|1|} > 2.0
tmdpdf = s KMR_s.dat
                                                                 cut = {pseudoRap|2|} > 2.0
tmdpdf = s~ KMR_sbar.dat
                                                                 cut = \{pseudoRap|1|\} < 4.5
tmdpdf = c KMR_c.dat
                                                                 cut = \{pseudoRap|2|\} < 4.5
tmdpdf = c~ KMR_cbar.dat
                                                                 cut = {mass | 1+2 | } > 60
tmdpdf = b KMR_b.dat
                                                                 cut = {mass | 1+2 | } < 120
tmdpdf = b~ KMR_bbar.dat
                                                                 cut = {pT|3|} > 20
Nflavors = 5
                                                                 cut = {rapidity|3|} > 2.0
helicity = sampling
                                                                 cut = {rapidity|3|} < 4.5
Noptim = 1,000,000
                                                                 scale = ({pT|3|}+{pT|1+2|}+91.1882D0)/3
E_{cm} = 7000
                                                                 mass = Z 91.1882 2.4952
Esoft = 20
                                                                 mass = W 80.419 2.21
                                                                 mass = H 125.0 0.00429
                                                                 mass = t. 173.5
                                                                 switch = withQCD Yes
      Example steering file:
                                                                 switch = withQED Yes
      p p \rightarrow \mu^+ \mu^- j in the forward direction
                                                                 switch = withWeak Yes
                                                                 switch = withHiggs No
                                                                 switch = withHG No
                                                                 coupling = Gfermi 1.16639d-5
```

https://bitbucket.org/hameren/katie

• has been used in several studies

KATIE

- Four-jet production in single- and double-parton scattering within high-energy factorization, Kutak, Maciula, Serino, Szczurek, AvH 2016
- Associated production of D-mesons with jets at the LHC, Maciula, Szczurek 2017
- Towards tomography of quarkgluon plasma using double inclusive forward-central jets in PbPb collision, Deák, Kutak, Tywoniuk 2017
- Single- and double-scattering production of four muons in ultraperipheral PbPb collisions at the Large Hadron Collider, AvH, Kusek-Gawenda, Szczurek 2017
- covers complete parton-level phase space; no deformation of final-state momenta required when interfacing with initial-state parton shower
 - Calculations with off-shell matrix elements, TMD parton densities and TMD Parton showers, Bury, AvH, Jung, Kutak, Sapeta, Serino in preparation
- one can use an arbitrary initial-state parton shower and re-weight events
- $\bullet\,$ can be used in "on-shell" mode, and is then equivalent to, say, tree-level $\rm MadGRAPH$

Initial steps have already been taken in the *parton reggeization approach* employing Lipatov's effective action. Hentschinski, Sabio Vera 2012 Chachamis, Hentschinski, Madrigal, Sabio Vera 2012 Nefedov, Saleev 2017

The main problem is caused by linear denominators in loop integrals

 $\int d^{4-2\epsilon}\ell \, \frac{\cdots}{\cdots \, p \cdot (\ell+K) \, \cdots}$

and the divergecies they cause. In particular one would like to use a regularization that

- is manifestly Lorentz covariant
- manifestly preserves gauge invariance
- can be used incombination with dimensional regularization
- is practical

where p,q are light-like with $p \cdot q > 0$, where $p \cdot k_T = q \cdot k_T = 0$, and where

$$\alpha = \frac{-\beta^2 k_T^2}{\Lambda (p+q)^2} \quad , \quad \beta = \frac{1}{1+\sqrt{1-x/\Lambda}} \quad \Longrightarrow \quad \begin{cases} p_A^2 = p_{A'}^2 = 0 \\ p_A^\mu + p_{A'}^\mu = x p^\mu + k_T^\mu \end{cases}$$

for any value of the parameter Λ . Auxiliary quark propagators become eikonal for $\Lambda \to \infty$:

$$i\frac{\not{p}_{A}+K}{(p_{A}+K)^{2}}=\frac{i\not{p}}{2p\cdot K}+\mathcal{O}(\Lambda^{-1})$$

where p,q are light-like with $p \cdot q > 0$, where $p \cdot k_T = q \cdot k_T = 0$, and where

$$\alpha = \frac{-\beta^2 k_T^2}{\Lambda(p+q)^2} \quad , \quad \beta = \frac{1}{1+\sqrt{1-x/\Lambda}} \quad \Longrightarrow \quad \begin{cases} p_A^2 = p_{A'}^2 = 0 \\ p_A^\mu + p_{A'}^\mu = x p^\mu + k_T^\mu \end{cases}$$

for any value of the parameter Λ . Auxiliary quark propagators become eikonal for $\Lambda \to \infty$:

$$\frac{\mathrm{i}\,\not\!{p}}{2\mathbf{p}\cdot(\ell+K)} = \mathrm{i}\,\frac{\not\!{p}_{\mathrm{A}}+\not\!\ell+K}{(\mathbf{p}_{\mathrm{A}}+\ell+K)^{2}} + \mathcal{O}\big(\Lambda^{-1}\big)$$

- Λ-parametrization provides natural regularization for linear denominators in loop integrals.
- Taking this limit after loop integration will lead to singularities $\log \Lambda$.

Integrand-based reduction methods cannot be applied with naïve limit $\Lambda \to \infty$ on integrand. For example, the integrand of the following graph (Feynman gauge) vanishes in that limit, but the integral does not:

$$\begin{split} & \Lambda p + K \stackrel{\text{def}}{\longrightarrow} = \int d^{4-2\varepsilon} \ell \frac{\langle p | \gamma^{\mu} (\ell + \Lambda \not p + K) \gamma_{\mu} | p]}{\ell^2 (\ell + \Lambda p + K)^2} \\ &= 2p \cdot K \left[\log \Lambda - \frac{1}{\varepsilon} - 1 + \log \left(-\frac{2p \cdot K}{\mu^2} \right) + \mathcal{O}(\varepsilon) \right] \end{split}$$

But $\langle p|\gamma^{\mu}p\gamma_{\mu}|p] = 0$, so naïve power counting in Λ does not work.

Behavior of the scalar integrals

$$\begin{split} \int \frac{d^{4-2\varepsilon}\ell}{\ell^2(\ell+K_1)^2(\ell+\Lambda p+K_2)^2(\ell+\Lambda p+K_3)^2} &= \frac{a\log^2\Lambda + b\log\Lambda + c + \mathcal{O}(\Lambda^{-1})}{\Lambda^2} \\ \int \frac{d^{4-2\varepsilon}\ell}{\ell^2(\ell+K_1)^2(\ell+K_2)^2(\ell+\Lambda p+K_3)^2} &= \frac{a\log^2\Lambda + b\log\Lambda + c + \mathcal{O}(\Lambda^{-1})}{\Lambda} \\ \int \frac{d^{4-2\varepsilon}\ell}{\ell^2(\ell+K_1)^2(\ell+\Lambda p+K_2)^2} &= \frac{a\log^2\Lambda + b\log\Lambda + c + \mathcal{O}(\Lambda^{-1})}{\Lambda} \\ \int \frac{d^{4-2\varepsilon}\ell}{\ell^2(\ell+\Lambda p+K_1)^2} &= b\log\Lambda + c + \mathcal{O}(\Lambda^{-1}) \end{split}$$

Tree-level parton-level event generation is the easy part of k_T -dependent factorization.