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|Collinear factorization| To separate a perturbatively calculable from
the universal in hadron scattering.
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|Forward-central dijet decorrelations pp→ 2j|
AvH, Kutak, Kotko, Sapeta 2014
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|Forward-central dijet decorrelations pp→ 2j|
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|Forward-central dijet decorrelations pp→ 2j|
AvH, Kutak, Kotko, Sapeta 2014
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Hybrid factorization:

dσpp→X =

∫
dk2T

∫
dxA

∫
dxB
∑

b

Fg∗(xA, kT , µ) fb(xB, µ)dσ̂g∗b→X(xA, xB, kT , µ)

kµ1 = xAP
µ
A + kµT P2A = 0 k21 = k

2
T

kµ2 = xBP
µ
B P2B = 0 k22 = 0
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|Forward-central dijet decorrelations pp→ 2j|
AvH, Kutak, Kotko, Sapeta 2014
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∫
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Fg∗(xA, kT , µ) fb(xB, µ)dσ̂g∗b→X(xA, xB, kT , µ)

kµ1 = xAP
µ
A + kµT P2A = 0 k21 = k

2
T

kµ2 = xBP
µ
B P2B = 0 k22 = 0

xB � xA
∣∣~p1 + ~p2

∣∣ = ∣∣~kT ∣∣
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|Four jets with kT -factorization| Maciu la, Szczurek,
Kutak, Serino, AvH 2016
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• ∆S is the azimutal angle between the sum of the two
hardest jets and the sum of the two softest jets.

• This variable has no distribution at LO in collinear
factorization: pairs would have to be back-to-back.

• kT -factorization allows for the necessary momentum inbalance.

∆S
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|Factorization for hadron scattering|
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• The parton level cross section dσ̂
(
π∗a(k1)π

∗
b(k2)→ Y

)
can

be calculated within perturbative QCD.

• The parton distribution functions fi,a and Fi,a must be mod-
elled and fit against data.

• Unphysical scale µ is a price to pay, but its dependence is
calculable within perturbative QCD via evolution equations.

General formula for cross section with π∗ ∈ {g∗, q∗, q̄∗}:

dσ
(
h1(p1)h2(p2)→ Y

)
=
∑

a,b

∫
d4k1 P1,a(k1)

∫
d4k2 P2,b(k2)dσ̂

(
π∗a(k1)π

∗
b(k2)→ Y

)
Collinear factorization: Pi,a(k) =

∫ 1

0

dx

x
fi,a(x, µ) δ

4(k− xpi)

kT -factorization: Pi,a(k) =

∫
d2kT
π

∫ 1

0

dx

x
Fi,a(x, |kT |, µ) δ

4(k− xpi − kT)
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|Factorization for hadron scattering|
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σ̂ =

∫
dΦ(1, 2→ 3, 4, . . . , n)

∣∣M(1, 2, . . . , n)
∣∣2O(p3, p4, . . . , pn)

phase space includes summation over color and spin
squared amplitude calculated perturbatively

observable includes phase space cuts, or jet algorithm

General formula for cross section with π∗ ∈ {g∗, q∗, q̄∗}:

dσ
(
h1(p1)h2(p2)→ Y

)
=
∑

a,b

∫
d4k1 P1,a(k1)

∫
d4k2 P2,b(k2)dσ̂

(
π∗a(k1)π

∗
b(k2)→ Y

)
Collinear factorization: Pi,a(k) =

∫ 1

0

dx

x
fi,a(x, µ) δ

4(k− xpi)

kT -factorization: Pi,a(k) =

∫
d2kT
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∫ 1

0

dx

x
Fi,a(x, |kT |, µ) δ

4(k− xpi − kT)
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|Gauge invariance|
In order to be physically relevant, any scattering amplitude following the constructive
definition given before must satisfy the following

Freedom in choice of gluon propagator:





−i

k2

[
gµν − (1− ξ)

kµkν

k2

]
−i

k2

[
gµν −

kµnν + nµkν

k·n + (n2 + ξk2)
kµkν

(k·n)2
]

Ward identity:

µk
µ = 0µε

µ(k) →

• Only holds if all external particles are on-shell.

• kT -factorization requires off-shell initial-state momenta kµ = pµ + kµT .

• How to define amplitudes with off-shell intial-state momenta?
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|Weyl spinors| for light-like momenta
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|Weyl spinors| for light-like momenta

|p] =

(
L(p)
0

)
L(p) =

1√
|p0 + p3|

(
−p1 + ip2
p0 + p3

)
|p〉 =

(
0
R(p)

)
R(p) =

√
|p0 + p3|

p0 + p3

(
p0 + p3
p1 + ip2

)

Dual spinors are defined
without complex conjugation

[p| =
(
(EL(p))T , 0

)
〈p| =

(
0 , (ETR(p))T

) E =

(
0 1

−1 0

)

|p〉[p|+ |p]〈p| = p/ = γµpµ
〈p||q] = [p||q〉 = 0
〈p||p〉 = [p||p] = 0

p/|p〉 = p/|p] = 0 , 〈p|p/ = [p|p/ = 0

pµ = 1
2
〈p|γµ|p]

〈pq〉 ≡ 〈p||q〉 , [pq] ≡ [p||q]

〈qp〉 = −〈pq〉 , [qp] = −[pq]

〈pq〉[qp] = 2p·q
〈p|k/|q] = [q|k/|p〉
〈p|r/|q] = 〈pr〉[rq]

Schouten identity
|q〉〈p|
〈pq〉 +

|p〉〈q|
〈qp〉 +

|q][p|

[pq]
+
|p][q|

[qp]
= 1
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|BCFW recursion| for on-shell amplitudes

Multi-gluon amplitudes have much simpler expressions than one would expect from the
Feynman graphs, in particular the MHV amplitudes:

A(i−, j−, (the rest)+) =
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|BCFW recursion| for on-shell amplitudes

Multi-gluon amplitudes have much simpler expressions than one would expect from the
Feynman graphs, in particular the MHV amplitudes:

A(i−, j−, (the rest)+) =
〈pipj〉4

〈p1p2〉〈p2p3〉 · · · 〈pn−2pn−1〉〈pn−1pn〉〈pnp1〉
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|BCFW recursion| for on-shell amplitudes
Britto, Cachazo,
Feng, Witten 2005

Multi-gluon amplitudes have much simpler expressions than one would expect from the
Feynman graphs, in particular the MHV amplitudes:

A(i−, j−, (the rest)+) =
〈pipj〉4

〈p1p2〉〈p2p3〉 · · · 〈pn−2pn−1〉〈pn−1pn〉〈pnp1〉

BCFW recursion allows for easy construction of such simple expressions

• it is a recursion of on-shell amplitudes, rather than off-shell Green functions

• it is most efficiently applied as a recursion of expressions

• it is easily proven using Cauchy’s theorem

For a rational function f of a complex variable z which vanishes at infinity, we have

∮

R

dz

2πi

f(z)

z

R→∞
= 0 ⇒ f(0) =

∑

i

Residue(f @ z = zi)

−zi

This is applied to amplitudes by turning them into functions of a complex variable by
analytical continuation of the momenta to complex values.
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|BCFW recursion| for on-shell amplitudes

Amplitudes have poles at kinematical channels, and the residues factorize into amplitudes.

p1 pn

p2

pi pi+1

pn−1

1

K2

Kµ = pµ1 + p
µ
2 + · · ·+ pµi

= −pµi+1 − · · ·− pµn−1 − pµn
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|BCFW recursion| for on-shell amplitudes
Britto, Cachazo,
Feng, Witten 2005

Amplitudes have poles at kinematical channels, and the residues factorize into amplitudes.

p1 + ze pn − ze
p2

pi pi+1

pn−1

1

K̂(z)2

K̂µ(z) = pµ1 + p
µ
2 + · · ·+ pµi + zeµ

= −pµi+1 − · · ·− pµn−1 − pµn + zeµ

eµ = 1
2
〈p1|γµ|pn]

K̂(z)2 = 0 ⇔ z = −
(p1 + · · ·+ pi)2
2(p2 + · · ·+ pi)·e
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|BCFW recursion| for on-shell amplitudes
Britto, Cachazo,
Feng, Witten 2005

Amplitudes have poles at kinematical channels, and the residues factorize into amplitudes.

p1 + ze pn − ze
p2

pi pi+1

pn−1

1

K̂(z)2

K̂µ(z) = pµ1 + p
µ
2 + · · ·+ pµi + zeµ

= −pµi+1 − · · ·− pµn−1 − pµn + zeµ

eµ = 1
2
〈p1|γµ|pn]

K̂(z)2 = 0 ⇔ z = −
(p1 + · · ·+ pi)2
2(p2 + · · ·+ pi)·e

A(1+, 2, . . . , n−1, n−) =

n−1∑

i=2

∑

h=+,−

A(1̂+, 2, . . . , i,−K̂h1,i)
1

K21,i
A(K̂−h

1,i , i+1, . . . , n−1, n̂
−)

A(1+, 2−, 3−) =
〈23〉3
〈31〉〈12〉 , A(1−, 2+, 3+) =

[32]3

[21][13]
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|Amplitudes with off-shell gluons|
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn, satisfying the conditions

kµ1 + k
µ
2 + · · ·+ kµn = 0 momentum conservation

p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn, satisfying the conditions

kµ1 + k
µ
2 + · · ·+ kµn = 0 momentum conservation

p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition

With the help of an auxiliary four-vector qµ with q2 = 0, we define

kµT (q) = k
µ − x(q)pµ with x(q) ≡ q·k

q·p
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn, satisfying the conditions

kµ1 + k
µ
2 + · · ·+ kµn = 0 momentum conservation

p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition

With the help of an auxiliary four-vector qµ with q2 = 0, we define

kµT (q) = k
µ − x(q)pµ with x(q) ≡ q·k

q·p
Construct kµT explicitly in terms of pµ and qµ:

kµT (q) = −
κ

2
εµ −

κ∗

2
ε∗µ with





εµ =
〈p|γµ|q]
[pq]

, κ =
〈q|k/|p]
〈qp〉

ε∗µ =
〈q|γµ|p]
〈qp〉 , κ∗ =

〈p|k/|q]
[pq]

k2 = −κκ∗ is independent of qµ, but also individually κ and κ∗ are independent of qµ.
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|BCFW recursion| for off-shell amplitudes
AvH 2014

AvH, Serino 2015

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑

i=2

∑

h=+,−

Ai,h

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h

“On-shell condition” for “off-shell” gluons: pi · ki = 0
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|BCFW recursion| for off-shell amplitudes
AvH 2014

AvH, Serino 2015

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑

i=2

∑

h=+,−

Ai,h +

n−1∑

i=2

Bi

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h
Bi =

1̂

i

1

2pi·Ki,n

n̂

i
i− 1 i+ 1

“On-shell condition” for “off-shell” gluons: pi · ki = 0
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|BCFW recursion| for off-shell amplitudes
AvH 2014

AvH, Serino 2015

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑

i=2

∑

h=+,−

Ai,h +

n−1∑

i=2

Bi + C + D ,

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h
Bi =

1̂

i

1

2pi·Ki,n

n̂

i
i− 1 i+ 1

C =

1̂ n̂

n− 12
1

κ1
D =

1̂ n̂

n− 12
1

κ∗1
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|Example of a 4-gluon amplitude|

A(1∗, 2−, 3∗, 4+) =

99928



|Example of a 4-gluon amplitude|

A(1∗, 2−, 3∗, 4+) =
〈13〉3[13]3

〈34〉〈41〉〈1|k/3 + p/4|3]〈3|k/1 + p/4|1][32][21]

+
1

κ∗1κ3

〈12〉3[43]3
〈2|k/3|4]〈1|k/3 + p/4|3](k3 + p4)2

+
1

κ1κ
∗
3

〈23〉3[14]3
〈2|k/1|4]〈3|k/1 + p/4|1](k1 + p4)2

• Eventual matrix element needs factor k21k
2
3 = |κ1|

2|κ3|
2.

This must not be included at the amplitude level not to spoil analytic structure.

• Last two terms dominate for |k1| → 0 and |k3| → 0, and give the on-shell helicity
amplitudes in that limit.

A(1∗, 2−, 3∗, 4+)
|k1|,|k3|→0−→ 1

κ∗1κ3
A(1−, 2−, 3+, 4+) +

1

κ1κ
∗
3

A(1+, 2−, 3−, 4+)

• Coherent sum of amplitudes becomes incoherent sum of squared amplitudes via angular
integrations for ~k1T and ~k3T .
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|Amplitude as embedding| AvH, Kutak, Kotko 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

pµA = Λpµ1 −
κ∗1
2
ε∗µ1

pµA ′ = −(Λ− x1)p
µ
1 −

κ1

2
εµ1
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|Amplitude as embedding| AvH, Kutak, Kotko 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

pµA = Λpµ1 −
κ∗1
2
ε∗µ1

pµA ′ = −(Λ− x1)p
µ
1 −

κ1

2
εµ1

Λ→∞

⇒
µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i
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|Amplitude as embedding| AvH, Kutak, Kotko 2013
AvH, Kutak, Salwa 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

j

i

= −i δi,j u(p1)

µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i

+ += + · · ·

qA γA

q

X
g g

γA

q

qA

q(k1)

g

qA γA

q

g

qA γA

q
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|Amplitude as embedding| AvH, Kutak, Kotko 2013
AvH, Kutak, Salwa 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

j

i

= −i δi,j u(p1)

µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i

+ += + · · ·

qA γA

q

X
g g

γA

q

qA

q(k1)

g

qA γA

q

g

qA γA

q

x
xxIn agreement with the effective action approach of xx
xxLipatov 1995, Antonov, Lipatov, Kuraev, Cherednikov 2005 xx
xxLipatov, Vyazovsky 2000, Nefedov, Saleev, Shipilova 2013 xx
xxand the Wilson-line approach of xx
xxKotko 2014 xx
x
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|KATIE| https://bitbucket.org/hameren/katie

• parton level event generator, like Alpgen, Helac, MadGraph, etc.

• arbitrary processes within the standard model (including effective Hg) with several
final-state particles.

• 0, 1, or 2 off-shell intial states.

• produces (partially un)weighted event files, for example in the LHEF format.

• requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids,
or with TMDlib Hautmann, Jung, Krämer, Mulders, Nocera, Rogers, Signori 2014.

• a calculation is steered by a single input file.

• employs an optimization stage in which the pre-samplers for all channels are optimized.

• during the generation stage several event files can be created in parallel.

• can generate (naively factorized) MPI events.

• event files can be processed further by parton-shower program like CASCADE.
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Example steering file:
pp→ µ+µ− j in the forward direction

Ngroup = 1

Nfinst = 3

process = g u -> mu+ mu- u factor = 1 groups = 1 pNonQCD = 2 0 0

process = g u~ -> mu+ mu- u~ factor = 1 groups = 1 pNonQCD = 2 0 0

process = g d -> mu+ mu- d factor = 1 groups = 1 pNonQCD = 2 0 0

process = g d~ -> mu+ mu- d~ factor = 1 groups = 1 pNonQCD = 2 0 0

lhaSet = MSTW2008nlo68cl

offshell = 1 0

tmdTableDir = /home/user0/kTfac/tables/krzysztof02/

tmdpdf = g KMR gluon.dat

tmdpdf = u KMR u.dat

tmdpdf = u~ KMR ubar.dat

tmdpdf = d KMR d.dat

tmdpdf = d~ KMR dbar.dat

tmdpdf = s KMR s.dat

tmdpdf = s~ KMR sbar.dat

tmdpdf = c KMR c.dat

tmdpdf = c~ KMR cbar.dat

tmdpdf = b KMR b.dat

tmdpdf = b~ KMR bbar.dat

Nflavors = 5

helicity = sampling

Noptim = 1,000,000

Ecm = 7000

Esoft = 20

cut = {deltaR|1,3|} > 0.4

cut = {deltaR|2,3|} > 0.4

cut = {pT|1|} > 20

cut = {pT|2|} > 20

cut = {pseudoRap|1|} > 2.0

cut = {pseudoRap|2|} > 2.0

cut = {pseudoRap|1|} < 4.5

cut = {pseudoRap|2|} < 4.5

cut = {mass|1+2|} > 60

cut = {mass|1+2|} < 120

cut = {pT|3|} > 20

cut = {rapidity|3|} > 2.0

cut = {rapidity|3|} < 4.5

scale = ({pT|3|}+{pT|1+2|}+91.1882D0)/3
mass = Z 91.1882 2.4952

mass = W 80.419 2.21

mass = H 125.0 0.00429

mass = t 173.5

switch = withQCD Yes

switch = withQED Yes

switch = withWeak Yes

switch = withHiggs No

switch = withHG No

coupling = Gfermi 1.16639d-5
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|KATIE| https://bitbucket.org/hameren/katie

• has been used in several studies

– Four-jet production in single- and double-parton scattering within high-energy
factorization, Kutak, Maciula, Serino, Szczurek, AvH 2016

– Associated production of D-mesons with jets at the LHC, Maciula, Szczurek 2017

– Towards tomography of quarkgluon plasma using double inclusive forward-central
jets in PbPb collision, Deák, Kutak, Tywoniuk 2017

– Single- and double-scattering production of four muons in ultraperipheral PbPb
collisions at the Large Hadron Collider, AvH, Kusek-Gawenda, Szczurek 2017

• covers complete parton-level phase space; no deformation of final-state momenta re-
quired when interfacing with initial-state parton shower

– Calculations with off-shell matrix elements, TMD parton densities and TMD
Parton showers, Bury, AvH, Jung, Kutak, Sapeta, Serino in preparation

• one can use an arbitrary initial-state parton shower and re-weight events

• can be used in “on-shell” mode, and is then equivalent to, say, tree-level MadGraph
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|Off-shell one-loop amplitudes|
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|Off-shell one-loop amplitudes|

Initial steps have already been taken in the parton reggeization approach employing Lipa-
tov’s effective action.
Hentschinski, Sabio Vera 2012
Chachamis, Hentschinski, Madrigal, Sabio Vera 2012
Nefedov, Saleev 2017

The main problem is caused by linear denominators in loop integrals

∫
d4−2ε`

· · ·
· · · p · (`+ K) · · ·

and the divergecies they cause. In particular one would like to use a regularization that

• is manifestly Lorentz covariant

• manifestly preserves gauge invariance

• can be used incombination with dimensional regularization

• is practical
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kµ = xpµ + k
µ
T p

µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = kµ − p

µ
A

|Off-shell one-loop amplitudes|

where p, q are light-like with p·q > 0, where p·kT = q·kT = 0, and where

α =
−β2k2T

Λ(p+ q)2
, β =

1

1+
√
1− x/Λ

=⇒
{
p2A = p2A ′ = 0

pµA + pµA ′ = xp
µ + kµT

for any value of the parameter Λ. Auxiliary quark propagators become eikonal for Λ→∞:

i
p/A + K/

(pA + K)2
=

ip/

2p·K + O
(
Λ−1

)
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p
µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = kµ − p

µ
A

kµ = xpµ + k
µ
T

|Off-shell one-loop amplitudes|

where p, q are light-like with p·q > 0, where p·kT = q·kT = 0, and where

α =
−β2k2T

Λ(p+ q)2
, β =

1

1+
√
1− x/Λ

=⇒
{
p2A = p2A ′ = 0

pµA + pµA ′ = xp
µ + kµT

for any value of the parameter Λ. Auxiliary quark propagators become eikonal for Λ→∞:

ip/

2p·(`+ K) = i
p/A + /̀+ K/

(pA + `+ K)2
+ O

(
Λ−1

)
• Λ-parametrization provides natural regularization for linear denominators in loop inte-

grals.

• Taking this limit after loop integration will lead to singularities logΛ.
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p
µ
A = Λpµ + αqµ + βk

µ
T

p
µ
A ′ = kµ − p

µ
A

kµ = xpµ + k
µ
T

|Off-shell one-loop amplitudes|

Integrand-based reduction methods cannot be applied with näıve limit Λ→∞ on inte-
grand. For example, the integrand of the following graph (Feynman gauge) vanishes in
that limit, but the integral does not:

Λp+ K

ℓ

=

∫
d4−2ε`

〈p|γµ(/̀+Λp/+ K/)γµ|p]
`2(`+Λp+ K)2

= 2p·K
[

logΛ−
1

ε
− 1+ log

(
−
2p·K
µ2

)
+ O(ε)

]

But 〈p|γµp/γµ|p] = 0, so näıve power counting in Λ does not work.
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|Behavior of the scalar integrals|

∫
d4−2ε`

`2(`+ K1)2(`+Λp+ K2)2(`+Λp+ K3)2
=
a log2Λ+ b logΛ+ c+ O

(
Λ−1

)
Λ2

∫
d4−2ε`

`2(`+ K1)2(`+ K2)2(`+Λp+ K3)2
=
a log2Λ+ b logΛ+ c+ O

(
Λ−1

)
Λ

∫
d4−2ε`

`2(`+ K1)2(`+Λp+ K2)2
=
a log2Λ+ b logΛ+ c+ O

(
Λ−1

)
Λ∫

d4−2ε`

`2(`+Λp+ K1)2
= b logΛ+ c+ O

(
Λ−1

)
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|Conclusions|

Tree-level parton-level event generation is
the easy part of kT -dependent factorization.
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