Electromagnetic fields in small systems

Sandeep Chatterjee
AGH-UST, Krakow
09 June, 2017

Work in preparation with Piotr Bozek, Adam Bzdak

Strong Magnetic fields in the initial stage

Strong Magnetic fields in the initial stage + Parity odd domains \rightarrow Chiral Magnetic Effect

Fukushima, Kharzeev, Mclerran, Warringa,..

Chiral Magnetic Effect: Observable

Voloshin 2004

Magnetic field \& Ellipticity tied up

$S=0 \Longrightarrow \vec{B}=0$. For such full overlap collisions, $\epsilon_{2}=0$ as well.

Magnetic field \& Ellipticity tied up

$S \neq 0 \Longrightarrow \vec{B} \neq 0$. For such mid-overlap collisions, $\epsilon_{2} \neq 0$ as well.

CME or v_{2} ?

from 1009.4283 (S. Schlichting and S. Pratt)

$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}$: what is expected ?

as concluded in 1610.07964

$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}$: similar correlation observed!

from 1610.00263

$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}$: similar correlation observed!

$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}: \mathrm{CME}$ or not

- while it is clear atleast in $\mathrm{p}+\mathrm{Pb}$ case that one do not expect it to be CME and the debate is ongoing on the interpretation of the data, we ask whether the EM fields in $\mathrm{p}+\mathrm{Pb}$ can be accessed in any other way or not
$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}: 2$ observations
$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}$: Similar angular correlation between E and Ψ_{1}

$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}:$ Similar angular correlation between E and Ψ_{1}

- $\mathrm{Pb}+\mathrm{Pb}$ and central $\mathrm{p}+\mathrm{Pb}$: Nucleon position fluctuation gives rise to both E as well as directed flow and try to make them back to back
- Non-central p+Pb: Geometry of the Pb nucleus gives rise to both E as well as directed flow and try to make them back to back

$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}: 2$ observations

- Similar angular correlation between E and Ψ_{1}
$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}$: Strong angular correlation between E and B in $\mathrm{p}+\mathrm{Pb}$ unlike in $\mathrm{Pb}+\mathrm{Pb}$

$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}$: Strong angular correlation between E and B in $\mathrm{p}+\mathrm{Pb}$ unlike in $\mathrm{Pb}+\mathrm{Pb}$

- The EM fields due to each moving source are orthogonal to each other (property of the Lienard-Wiechart potential)
- The EM fields due to superposition of a bunch of moving charges
- no more orthogonal in general
- are also orthogonal if they move with same velocity
- in $\mathrm{p}+\mathrm{Pb}$, all but one proton move with same velocity giving rise to strong angular correlation between the E and B fields
- in $\mathrm{Pb}+\mathrm{Pb}$, protons from the two nuclei have opposite velocities which is enough to decorrelate the E and B fields

$\mathrm{Pb}+\mathrm{Pb}$ vs $\mathrm{p}+\mathrm{Pb}: 2$ observations

- Similar angular correlation between E and Ψ_{1}
- The above correlation can be brushed off into an angular correlation between B and Ψ_{1} in $\mathrm{p}+\mathrm{Pb}$; not true for $\mathrm{Pb}+\mathrm{Pb}$ as no correlation between B and E.
NOTE: The correlation between B and Ψ_{1} in $\mathrm{p}+\mathrm{Pb}$ is strongest for central $\mathrm{p}+\mathrm{Pb}$, with more non-central collisions, the number of protons from Pb that are close to the fireball decrease resulting in weakening of the correlation between B and E and thus between B and Ψ_{1}.
- Is this correlation between B and Ψ_{1} in $\mathrm{p}+\mathrm{Pb}$ helpful ? Can it give rise to non-zero $\left\langle\cos \left(2\left(\Psi_{B}-\Psi_{1}\right)\right)\right\rangle$? Non-zero charge separation w.r.t the directed flow event plane as signature of CME in $\mathrm{p}+\mathrm{Pb}$?

$\left\langle\cos \left(2\left(\Psi_{B}-\Psi_{1,2}\right)\right)\right\rangle$

Optimal size for probe

- Contribution of a nucleon at \vec{r} to
- EM field fall like $\sim 1 / r^{2}$
- ε_{1} (first order eccentricity) grow like $\sim r^{3}$
- For large probe size, the above is a source for decorrelation as those nucleons that contribute to EM field do not drive the first order eccentricity. Hence a small probe like proton is the ideal choice to maximise the correlation between B and Ψ_{1}.

Optimal size for probe

$\left\langle\cos \left(2\left(\Psi_{B}-\Psi_{1}\right)\right)\right\rangle:$ across systems

Lorentz force on heavy quark: alt. to access EM field

Lorentz force at mid-rapidity

Summarising

- Interpretation of data on charge separation in heavy ion is still inconclusive on whether CME has been observed or not
- The recent observation of similar charge separation w.r.t the second order event plane in $\mathrm{p}+\mathrm{Pb}$ where there is null expectation from CME has validated the importance of non-CME like background contribution to such signal
- We find that although null result is expected w.r.t second order event plane, when we replace the second order event plane with the first order event plane, non-zero CME signal is expected.
- Unlike in heavy ion collisions where the correlation between B and Ψ_{2} is geometry driven, the correlation between B and Ψ_{1} in central $\mathrm{p}+\mathrm{Pb}$ is fluctuation driven. This could have positive implication in minimising background.
- Interesting phenomenological consequence on heavy quark flow due to early time Lorentz force. For e.g., at mid-rapidity, there should be charge splitting in the directed flow of heavy quark for central collisions that should reduce as one goes to peripheral collisions.

THANK YOU FOR YOUR ATTENTION

