Recent results on directed flow measurements in $\mathrm{Cu}+\mathrm{Au}$ and $\mathrm{Au}+\mathrm{Au}$ collisions at RHIC

Mariusz Przybycień

Wydział Fizyki i Informatyki Stosowanej
Akademia Górniczo-Hutnicza
Kraków, 9.11.2018

STAR in

Introduction

- Immadiately after an A+A collision, the overlap region defined by the nuclear geometry is almond shaped, with shortest axis along the impact parameter vector.
- Multiple interactions between particles in the evolving system change the initial coordinate space asymmetry into final momentum space asymmetry.

Coordinate space: initial asymmetry

Momentum space: final asymmetry

The observed anisotropy is usually expressed as a Fourier series expansion in azimuthal angle ϕ of produced particles:

$$
E \frac{\mathrm{~d}^{3} N}{\mathrm{~d} p^{3}}=\frac{1}{p_{\mathrm{T}}} \frac{\mathrm{~d}^{3} N}{\mathrm{~d} \phi \mathrm{~d} p_{\mathrm{T}} \mathrm{~d} y}=\frac{1}{2 \pi p_{\mathrm{T}}} \frac{E}{p} \frac{\mathrm{~d}^{2} N}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} \eta}\left(1+2 \sum_{n=1}^{\infty} \mathrm{v}_{n}\left(p_{\mathrm{T}}, \eta\right) \cos \left(n\left(\phi-\Psi_{n}\right)\right)\right)
$$

Ψ_{n} - azimuthal angle of the n-th order symmetry plane of the initial geometry, $\mathrm{v}_{n} \equiv\left\langle\mathrm{e}^{i n\left(\phi-\Psi_{n}\right)}\right\rangle=\left\langle\cos n\left(\phi-\Psi_{n}\right)\right\rangle$ - magnitude of the n-th flow harmonics.

Flow harmonics

- The v_{n} coefficients characterize quantitatively the event anisotropy. Each term in the series corresponds to a different harmonic flow:
$\mathbf{v}_{\mathbf{1}}$ - directed flow, is the consequence of momentum conservation,
$\mathbf{v}_{\mathbf{2}}$ - elliptic flow, arises from the initial geometry of the overlap zone,
$\mathbf{v}_{\mathbf{3}}$ - triangular flow (and also higher flow harmonics) are due to fluctuations in collisions and colliding nuclei.
- Elliptic flow is well described (for $p_{\mathrm{T}}<2 \mathrm{GeV}$) by viscous hydrodynamic models with extremaly small ratio shear viscosity to entropy density, η / s.
- Higher harmonic flow coefficients provide additional constraints on QGP models and on the initial conditions in HI collisions.
- There exist no single model that satisfactorily explains the directed flow dependencies on centrality, collsion energy, system size, rapidity, p_{T}, and on particle type.
- This clearly indicates that an important piece in our picture of ultrarelativistic collisions is still missing, and better understanding of the directed flow may affect many conclusions made solely on the elliptic flow measurements, as the initial conditions that would be required for its satisfactory description could lead to stronger or weaker elliptic flow.
- As the directed flow originates in the initial-state spatial and momentum asymmetries in the transverse plane, it might be intimately related to the vorticity in the system.

Flow harmonics and symmetry planes

- Because of event-by-event fluctuations in the initial energy density of the collision one usualy defines other symmetry planes:
- projectile $\left(\Psi_{\text {SP }}^{p}\right)$ and target ($\Psi_{\text {SP }}^{t}$) spectator
angles - defined by the projectile and target
- projectile $\left(\Psi_{\text {SP }}^{p}\right)$ and target (Ψ_{SP}^{t}) spectator
angles - defined by the projectile and target spectators, respectively.
- participant plane angle (Ψ_{PP}) - defined by dipol asymmetry of the initial energy density,
- fluctuations leading to a dipol asymmetry in the transverse plane lead to nonzero directed flow i.e. dipole flow, even at midrapidity. The direction (azimuthal angle) of the dipole asymmetry $\Psi_{1}^{\text {dipole }}$ can be approximated by $\Psi_{1,3}=\operatorname{arctg}\left(\left\langle r^{3} \sin \phi\right\rangle /\left\langle r^{3} \cos \phi\right\rangle\right)+\pi$
- In an ideal case the angles Ψ_{n} correspond to the reaction plane angle $\Psi_{\text {RP }}$. In practice they can differ and depend on n.

target projectile

Solenoidal Tracker At RHIC experiment

STAR detector

- TPC: $d E / d x, L$

- ToF: measures $\beta=\frac{L}{c t}$, $m^{2} c^{2}=p^{2}\left(1 / \beta^{2}-1\right)$
- TPC and ToF coverage: $|\eta|<1,0<\phi<2 \pi$
- BBC: Scintilator tiles located at $3.3<|\eta|<5$
- ZDC-SMD: Calorimeters located at $z= \pm 18 \mathrm{~m}$ from IP, with position detectors inserted between the modules.

Event plane determination and resolution

- Use event plane angles $\psi_{n}^{\text {obs }}$ as estimates of the angles Ψ_{n} (PRC 58 (1998) 1671).
- Define the components of the event flow vector Q_{n} as:
$Q_{n, x}=\sum_{i} w_{i} \cos \left(n \phi_{i}\right)=Q_{n} \cos \left(n \psi_{n}^{\text {obs }}\right), \quad Q_{n, y}=\sum_{i} w_{i} \sin \left(n \phi_{i}\right)=Q_{n} \sin \left(n \psi_{n}^{\text {obs }}\right)$ where w_{i} is the weight for particle i ($p_{\mathrm{T}}, E_{\mathrm{T}}$ or $A D C$ depending on the detector used).
- The event plane angle from Q_{n} reads: $\psi_{n}^{\text {obs }}=\frac{1}{n} \operatorname{arctg}\left(\frac{Q_{n, y}}{Q_{n, x}}\right)$
- The first-order event plane for v_{1} is obtained from ZDC-SMD as follows:
$\langle S\rangle=\sum_{i} S_{i} w_{S_{i}} / \sum_{i} w_{S_{i}}$ where $S \equiv X, Y$ $\psi_{1}^{\text {obs }}=\operatorname{arctg}(\langle Y\rangle /\langle X\rangle)$
- Define event plane resolution as:
$\operatorname{Res}\left\{\psi_{n}^{\text {obs }}\right\}=\left\langle\cos n\left(\psi_{n}^{\text {obs }}-\Psi_{\mathrm{RP}}\right)\right\rangle$
- Event plane resolution from 2 subevent method:
$\operatorname{Res}\left\{\psi_{n}^{A(B)}\right\}=\sqrt{\left\langle\cos \left(n\left(\psi_{n}^{A}-\psi_{n}^{B}\right)\right)\right\rangle}$
- Event plane resolution from 3 subevent method:

$$
\operatorname{Res}\left\{\psi_{n}^{A}\right\}=\sqrt{\frac{\left\langle\cos n\left(\psi_{n}^{A}-\psi_{n}^{B}\right)\right\rangle\left\langle\cos n\left(\psi_{n}^{A}-\psi_{n}^{C}\right)\right\rangle}{\left\langle\cos n\left(\psi_{n}^{B}-\psi_{n}^{C}\right)\right\rangle}}
$$

Origin of the directed flow

- In hydrodynamic models, the rapidity dependence of v_{1} is reproduced through "tilted" source initial conditions: $\mathrm{v}_{1}\left(p_{\mathrm{T}}\right)$ is a monotonic function of p_{T} and dependence of $\left\langle p_{x}\right\rangle(\eta) \equiv\left\langle p_{\mathrm{T}} \cos \left(\phi-\Psi_{1}\right)\right\rangle$ is directly related to $\mathrm{v}_{1}(\eta)$.
- Additional contribution to v_{1} might come from dipol-like pressure gradients, with the sign of the average contribution to v_{1} determined by low p_{T} particles.
- Difference in the number of participants in the projectile and target nuclei leads to a shift of the position of the centre-of-mass of participating nucleons - this results in the shape of $\mathrm{v}_{1}(\eta)$ to stay mostly unchanged but the entire $\mathrm{v}_{1}(\eta)$ curve be shifted in the direction of rapidity where more participants move.

Directed flow of unidentified hadrons

- Measurement of v_{1} of charged particles as a function of pseudorapidity with respect to target and projectile spectator planes.
- Use of event plane method to obtain $\quad \mathrm{v}_{1}=\frac{\left\langle\cos \left(\phi-\psi_{1}^{\mathrm{obs}}\right)\right\rangle}{\operatorname{Res}\left(\Psi_{1}\right)}$
- Projectile spectators deflect on average along the impact parameter vector.
- The sign of v_{1} measured with respect to the target spectator plane has been reversed.
- A finite difference is seen between v_{1} measured with respect to each spectaror plane.

M. Przybycień (WFiIS AGH)

- This indicates existence of a fluctuation (or rapidity even for $A u+A u)$ component of v_{1} in both symmetric and asymmetric collision systems.
- Mean $p_{\text {T }}$ projected onto the spectator plane:

$$
\left\langle p_{x}\right\rangle=\frac{\left\langle p_{\mathrm{T}} \cos \left(\phi-\psi_{1}^{\mathrm{obs}}\right)\right\rangle}{\operatorname{Res}\left(\Psi_{1}\right)}
$$

- Small difference is seen between results with two spectator planes in $\mathrm{Cu}+\mathrm{Au}$.

Conventional and fluctuation components of v_{1}

- For a nonfluctuating nuclear matter distribution, the directed flow in the participant zone develops along the impact parameter direction.
- In symmetric collisions v_{1} is an antisymmetric function of rapidity: $\mathrm{v}_{1}^{\text {odd }}(\eta)=-\mathrm{v}_{1}^{\text {odd }}(-\eta)$
- Due to EbyE fluctuations in the initial energy density, the directed flow can develop a rapidity-symmetric component, $\mathrm{v}_{1}^{\text {even }}(\eta)=\mathrm{v}_{1}^{\text {even }}(-\eta)$, which does not vanish at $\eta=0$.
- Define: $\mathrm{v}_{1}^{\text {odd }}=\frac{1}{2}\left(\mathrm{v}_{1}\left\{\Psi_{\mathrm{SP}}^{p}\right\}-\mathrm{v}_{1}\left\{\Psi_{\mathrm{SP}}^{t}\right\}\right), \quad \mathrm{v}_{1}^{\text {even }}=\frac{1}{2}\left(\mathrm{v}_{1}\left\{\Psi_{\mathrm{SP}}^{p}\right\}+\mathrm{v}_{1}\left\{\Psi_{\mathrm{SP}}^{t}\right\}\right)$
- Different nomenclature in asymmetric collisions: odd \rightarrow conv; even \rightarrow fluc

M. Przybycień (WFiIS AGH)

- $\mathrm{v}_{1}^{\text {even(fluc) }}$ not depend on η, with absolute values larger in $\mathrm{Cu}+\mathrm{Au}$ than in $\mathrm{Au}+\mathrm{Au}$, due to larger initial density fluctuations.
- Behaviour of $\left\langle p_{x}\right\rangle /\left\langle p_{\mathrm{T}}\right\rangle$ is similar to that of v_{1}.

Centrality dependence of slopes and intercepts

- Similar slopes of v_{1} and $\left\langle p_{x}\right\rangle /\left\langle p_{\mathrm{T}}\right\rangle$ are expected for a tilted source models.
- The intercepts of $\left\langle p_{x}\right\rangle$ follow very closely the shift in rapidity of the center of mass of the system, $y_{C M} \approx \frac{1}{2} \ln \left(N_{\text {part }}^{\mathrm{Au}} / N_{\text {part }}^{\mathrm{Cu}}\right)$, from Glauber simulation.
- Centrality dependence of the difference in v_{1} and $\left\langle p_{x}\right\rangle$ intercepts is mostlly determined by the decorrelation between the dipole flow direction $\Psi_{1.3}$ and the spectator planes.

- In tilted source scenario the slope of $\left\langle p_{x}\right\rangle /\left\langle p_{\mathrm{T}}\right\rangle$ is expected to be 50% larger than the slope of v_{1}.
- Relative contribution from the source tilt is about $2 / 3$ at the top RHIC collision energy:

$$
\begin{aligned}
r & =\frac{\left(d \mathrm{v}_{1} / d \eta\right)^{\mathrm{tilt}}}{d \mathrm{v}_{1} / d \eta} \approx \\
& \approx \frac{2}{3} \frac{\left(1 / p_{\mathrm{T}}\right)\left(d\left\langle p_{x}\right\rangle / d \eta\right)}{d \mathrm{v}_{1} / d \eta}
\end{aligned}
$$ and decreasing to about $1 / 3$ at the LHC energy.

Centrality dependence of even (fluc) components

- The of $\mathrm{v}_{1}^{\text {even }}$ for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Pb}+\mathrm{Pb}$ have a weak centrality dependence and are consistent except in most peripheral collisions.

- $\left\langle p_{x}^{\text {even }}\right\rangle$ in both $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Pb}+\mathrm{Pb}$ are consistent with zero - this may suggest that the dipole-like fluctuations in initial state have little dependence on system size and collision energy.
- $\mathrm{v}_{1}^{\text {fluc }}$ and $\left\langle p_{x}^{\text {fluc }}\right\rangle$ for $\mathrm{Cu}+\mathrm{Au}$ has a larger magnitude than in symmetric collisions over entire centrality range.

Dependence of the directed flow on transverse momentum

- The $\mathrm{v}_{1}^{\text {conv }}$ in $\mathrm{Cu}+\mathrm{Au}$ collisions exhibits a sign change around $p_{\mathrm{T}}=1 \mathrm{GeV}$ and its magnitude at both low and high p_{T} becomes smaller for peripheral collisions.
- Similar p_{T} and centrality dependencies (although with opposite sign) are observed in $\mathrm{v}_{1}^{\text {fluc }}$
- The signal of both $v_{1}^{\text {odd }}$ and $v_{1}^{\text {even }}$ in $A u+A u$ are smaller than in $C u+A u$ but, at least in central collisions, they still show the sign change in the p_{T} dependence.

Directed flow from three point correlator

- Directed flow can be also measured with three point correlator (PRC 72, 014904 (2005)):
$\mathrm{v}_{1}\{3\}=\frac{\left\langle\cos \phi+\psi_{1}^{\mathrm{obs}}-2 \psi_{2}^{\mathrm{obs}}\right\rangle}{\operatorname{Res}\left(\Psi_{1}\right) \times \operatorname{Res}\left(\Psi_{2}\right)}$ where $\psi_{1}^{\text {obs }}$ and $\psi_{2}^{\text {obs }}$ were taken from different subevents and ϕ is azimuthal angle of particles in rapidity region different from those subevents.
- $\mathrm{v}_{1}\{3\}$ does not use spectator planes and helps to partly remove non-flow effects.
- $\mathrm{v}_{1}\{3\}$ is consistent with $\mathrm{v}_{1}^{\text {conv }}$ for $p_{\mathrm{T}}<1 \mathrm{GeV}$, but becomes greater for $1<p_{\mathrm{T}}<4 \mathrm{GeV}$.
- $\mathrm{v}_{1}\{3\}$ includes both conventional and fluctuation components of v_{1}.
- The "conv" component in $\mathrm{v}_{1}\{3\}$ should be the same as measured by event plane method, but the "fluc" component might be different due to different correlations of the spectator and participant planes with $\Psi_{1,3}$.

Directed flow of identified hadrons

- Directed flow of pions, kaons and (anti)protons measured with respect to the target (Au) spectator plane $\left(\mathrm{v}_{1}=-\mathrm{v}_{1}\left\{\Psi_{\mathrm{SP}}^{t}\right\}\right)$.
- For $p_{\mathrm{T}}<2 \mathrm{GeV}$ there is clear particle type dependence reflecting the effect of particle mass in interplay of the radial and directed flow.
- Not so clear particle type dependence for $p_{\mathrm{T}}>2 \mathrm{GeV}$ due to the large uncertainties.

Charge dependence of directed flow

- A finite difference in directed flow between positively and negatively charged particle is observed in $\mathrm{Cu}+\mathrm{Au}$ collisions due to asymmetry in the electric charge of the nuclei.
- Similarily there is clear difference between observed $\left\langle p_{x}\right\rangle$ of positive and negative particles in $\mathrm{Cu}+\mathrm{Au}$ but not in $\mathrm{Au}+\mathrm{Au}$ collisions.
- However, this difference is much smaller (~ 30 times!) than expected from rough calculations, what might suggest that the numbers of quarks and antiquarks are overestimated at the time when the initial electric field is strong.

Charge dependence of v_{1} for identified particles

- Clear charge dependence of v_{1} for π^{+}and π^{-}is observed. For Kaons and (anti)protons there are no significant differences within current experimental precision.

Summary

- Directed flow for inclusive as well as identified charged particles was measured as a function of η and $p_{\text {T }}$ over a wide centrality range in $\mathrm{Cu}+\mathrm{Au}$ and $\mathrm{Au}+\mathrm{Au}$ collisions.
- The measured directed flow in $\mathrm{Cu}+\mathrm{Au}$ and $\mathrm{Au}+\mathrm{Au}$ collisions at RHIC is consistent with a picture of the directed flow originating from the initial source tilt and the initial density asymmetry.
- Relative contribution to the $\mathrm{v}_{1}^{\text {odd }}$ slope from the initial tilt is about $2 / 3$ in mid-central collisions at RHIC and the rest comes from the rapidity-dependent density asymmetry.
- The mean transverse momentum projected onto the spectator plane $\left\langle p_{x}\right\rangle$ shows charge dependence in $\mathrm{Cu}+\mathrm{Au}$ but not in $\mathrm{Au}+\mathrm{Au}$ collisions. The observed difference can be explained by the initial electric field due to charge difference in Cu and Au spectator protons

Backup slides

Directed flow from a tilted source

Derivation of the relation between v_{1} and $\left\langle p_{x}\right\rangle$ in the tilted source scenario (based on S.A. Voloshin, PRC 55, R1630 (1997)).

- Let us denote the invariant particle distribution as

$$
\frac{d^{3} N}{d^{2} p_{\mathrm{T}} d y} \equiv J_{0}\left(p_{\mathrm{T}}, y\right)
$$

- A small tilt in $x z$ plane by an angle γ leads to a change in the x component of the momentum $\quad \Delta p_{x}=\gamma p_{z}=\gamma p_{\mathrm{T}} / \operatorname{tg}(\theta)=\gamma p_{\mathrm{T}} \sinh \eta$
- The particle distribution in a tilted coordinate system reads:

$$
J \approx J_{0}+\frac{\partial J_{0}}{\partial p_{\mathrm{T}}} \frac{\partial p_{\mathrm{T}}}{\partial p_{x}} \Delta p_{x}=J_{0}\left(1+\frac{\partial \ln J_{0}}{\partial p_{\mathrm{T}}} \cos \phi p_{\mathrm{T}} \gamma \sinh \eta\right)
$$

- From the above one gets: $\quad \mathrm{v}_{1}\left(p_{\mathrm{T}}\right)=\frac{1}{2} \gamma p_{\mathrm{T}} \sinh \eta \frac{\partial \ln J_{0}}{\partial p_{\mathrm{T}}}$
- Heavier particle spectra have less steep dependence on p_{T}, which leads to the mass dependence of $\mathrm{v}_{1}\left(p_{\mathrm{T}}\right)$ - heavier particles have smaller v_{1} at a given p_{T}.
- Integrating over p_{T}, and using p_{T} weight for $\left\langle p_{x}\right\rangle$ calculation leads to the following ratio of slopes:

$$
\frac{\frac{1}{p_{\mathrm{T}}} \frac{d\left\langle p_{x}\right\rangle}{d \eta}}{\frac{d \mathrm{v}_{1}}{d \eta}}=\frac{1}{p_{\mathrm{T}}} \frac{\left\langle p_{\mathrm{T}}^{2} \frac{\partial \ln J_{0}}{\partial p_{\mathrm{T}}}\right\rangle}{\left\langle p_{\mathrm{T}} \frac{\partial \ln J_{0}}{\partial p_{\mathrm{T}}}\right\rangle}
$$

- For both the exponential form of $J_{0}\left(p_{\mathrm{T}}\right)$ (approximately describing the spectra of light particles) and the Gaussian form (better suited for description of protons), this ratio equals 1.5 .

