Testing parton distribution functions with *W* and *Z* bosons in the ATLAS experiment

Jakub Kremer

December 14, 2018

AGH University of Science and Technology, Kraków, Poland

Outline

- Importance of W/Z boson measurements in the context of parton distribution function studies
- ATLAS measurements of *W*/*Z* boson production in *pp* collisions:
 - $\sqrt{s} = 5.02 \text{ TeV}$
 - Performance studies
 - Background estimation
 - Results/Comparison to theory
 - $\cdot \sqrt{s} = 13 \text{ TeV}$
 - Results/Comparison to theory
 - $\cdot \sqrt{s} = 7 \text{ TeV}$
 - Results/Comparison to theory
 - Impact of results on PDFs
- Summary and outlook

- The **factorization theorem** for QCD calculations states that non-perturbative and perturbative parts can be factorized, e.g. into:
 - non-perturbative parton distribution functions (PDFs) which define the initial-state kinematics of the process
 - perturbative **matrix element** which describes the actual hard process
 - non-perturbative fragmentation functions which describe hadronization
- PDFs can be extracted from **global fits** to measurements of different processes.
- PDFs are usually parametrized in the Björken variables x and Q^2 .

W and Z boson measurements at LHC energies

- Measurements of weak boson production in *pp* collisions provide a powerful tool to **test both the electroweak theory and underlying QCD dynamics**.
- Dominant production mode at the LHC is through **quark-antiquark annihilation**.
- $\cdot\,$ Contributions from different quark flavours vary with $\sqrt{s}.$
- Rapidity differential cross-sections are very useful to provide constraints on PDFs.

W and Z boson measurements at LHC energies

- Measurements of weak boson production cross-sections are **sensitive to PDFs** over a wide range in x at a fixed Q^2 .
- Example: (*x*, *Q*²) coverage of measurements used in fits for the NNPDF3.1 PDF set.
- NNPDF3.1 fit includes measurements of rapidity differential W/Z cross-sections at:

$$\cdot \sqrt{s} = 7$$
 TeV (ATLAS, CMS)

$$\cdot \sqrt{s} = 8 \text{ TeV} (\text{CMS})$$

- This talk presents ATLAS results on *W*/*Z* boson production at:
- NEW · $\sqrt{s} = 5.02$ TeV (2015 dataset): arXiv:1810.08424, under review in Eur. Phys. J. C
 - $\sqrt{s} = 7$ TeV: Eur. Phys. J. C 77 (2017) 367
 - √s = 13 TeV (early 2015 dataset): Phys. Lett. B 759 (2016) 601

ATLAS detector / Datasets

- All presented measurements use **leptonic decay channels** $(W^{\pm} \rightarrow \ell^{\pm}\nu, Z \rightarrow \ell^{+}\ell^{-}, where \ell = e, \mu)$ to profit from the excellent lepton reconstruction in ATLAS:
 - \cdot Charged particle tracking in $|\eta| <$ 2.5 \rightarrow electrons, muons, MET
 - + Calorimeter system in $|\eta| <$ 4.9 \rightarrow electrons, MET
 - Muon reconstruction in $|\eta| < 2.4$ (muon spectrometer + inner detector)

$W \rightarrow \mu \nu$ candidate event

W/Z bosons at $\sqrt{s} = 5.02$ TeV

Event selection

- Events collected with single-lepton triggers ($p_T^e = 15$ GeV and $p_T^\mu = 14$ GeV thresholds).
- · Leptons required to pass reconstruction quality and isolation selections.
- Kinematic selections: $p_T^{e(\mu)} > 25 \text{ GeV}$ (*W* candidates), $p_T^{e(\mu)} > 20 \text{ GeV}$ (*Z* candidates), $|\eta_e| < 1.37 \text{ or } 1.52 < |\eta_e| < 2.47$, $|\eta_\mu| < 2.4$

W boson candidates:

- Additional selection using missing transverse momentum: $E_T^{miss} > 25$ GeV, and transverse mass: $m_T > 40$ GeV.
- Require exactly one good lepton matched to trigger in the event.
- · \sim 38000 (44000) $W^+ \rightarrow e^+ \nu$ ($W^+ \rightarrow \mu^+ \nu$) candidates
- $\cdot \sim$ 24000 (27000) W⁻ $\rightarrow e^{-}\nu$ (W⁻ $\rightarrow \mu^{-}\nu$) candidates

Z boson candidates:

- + Oppositely charged lepton pairs in mass range: 66 $< m_{\ell\ell} <$ 116 GeV
- One of the leptons matched to trigger.
- Roughly **4800 (7400)** events with $Z \rightarrow ee$ ($Z \rightarrow \mu\mu$) candidates found.

- $\cdot\,$ Many dedicated performance studies are crucial to achieve high precision of measurements.
- Data was taken in low-pileup conditions, so the impact on measurements had to be studied.

Lepton performance: calibration

- Data was taken in low-pileup conditions, but **standard lepton energy/momentum calibrations are derived for high-pileup datasets**.
- Using the standard electron energy calibration in a low-pileup dataset leads to a shift and widening of the $Z \rightarrow e^+e^-$ invariant mass peak.
- · Dedicated corrections to the calibration were necessary to improve the agreement.
- · Standard muon momentum calibration works well.
- $\cdot Z \rightarrow \ell^+ \ell^-$ events are used to select a clean sample of leptons for efficiency measurements¹⁰

Lepton performance: efficiencies

- · Any detector inefficiencies need to be corrected for in the measurements.
- Efficiencies are measured with the tag-and-probe method in $Z \rightarrow \ell^+ \ell^-$ events.
- Precision of efficiency measurements is limited by number of Z boson events in data.
- $\cdot\,$ All electron efficiences are in the range 85–100% and do not vary strongly with $\eta.$
- Muon reconstruction/identification and isolation efficiences are above 95%, but trigger efficiency is lower with a significant η dependence.

E^{miss} calculation: hadronic recoil

- In W and Z boson events the hadronic recoil u_T provides an estimate of the boson transverse momentum.
- Previous ATLAS measurements used a hadronic recoil reconstruction algorithm hadronic recoil based on calorimetric clusters.
- For this measurement, the algorithm was improved to use Particle Flow
 Objects (PFOs) which reduces pileup dependence and improves resolution.

- PFOs can be split into two categories: **neutral PFOs** consist of a calorimetric cluster, while **charged PFOs** additionally match a charged-particle track.
- The **recoil is reconstructed as the sum over PFOs** in the event, rejecting the charged ones assigned to pileup vertices, and masking signal leptons.
- Missing transverse momentum E_T^{miss} is calculated using the recoil:

$$ec{E}_{ extsf{T}}^{ extsf{miss}} = -(ec{u}_{ extsf{T}}^{ extsf{PFO}} + ec{p}_{ extsf{T}}^{ extsf{signal lepton}})$$

Hadronic recoil: calibration

- The hadronic recoil in simulation needs to be calibrated.
- Corrections to the recoil scale and resolution are derived in $Z \rightarrow \ell^+ \ell^-$ events as a function of p_T^Z .
- Calibration improves data/MC agreement in $Z \rightarrow \ell^+ \ell^-$ events.
- \cdot The derived corrections are then applied to simulated $W^\pm o \ell^\pm
 u$ events.

W bosons: multi-jet background estimation

- Multi-jet background category includes semileptonic heavy-flavour decays, pion/kaon decays, photon conversions or misidentified hadrons.
- This background contribution is estimated using **template fits to data** in a phase-space region without E_T^{miss} and m_T requirements.
- Fits are repeated using several kinematic distributions (p_T^{ℓ} , E_T^{miss} or m_T).
- Multi-jet template is constructed from data with anti-isolated leptons, while templates for signal and other background processes come from MC.

W bosons: multi-jet background estimation

- Choice of isolation region used to define multi-jet template is arbitrary.
- Therefore, yields of multi-jet background are estimated with templates constructed using **different isolation regions**.
- Final multi-jet background yield in the signal region is defined by:
 - linear extrapolation of yields to 0 isolation
 - · taking average of yields obtained using different kinematic distributions

Background	$W^+ \to e^+ \nu \ (W^+ \to \mu^+ \nu)$	$W^- \to e^- \nu \ (W^- \to \mu^- \nu)$	$Z \to e^+ e^- \ (Z \to \mu^+ \mu^-)$
	[%]	[%]	[%]
$Z \to \ell^+ \ell^-, \ell = e, \mu$	0.1(2.8)	0.2(3.8)	-
$W^{\pm} \to \ell^{\pm} \nu, \ell = e, \mu$	_	_	$< 0.01 \ (< 0.01)$
$W^{\pm} \to \tau^{\pm} \nu$	1.8 (1.8)	1.8(1.8)	$< 0.01 \ (< 0.01)$
$Z \to \tau^+ \tau^-$	0.1 (0.1)	0.1 (0.1)	0.07 (0.07)
Multi-jet	0.9(0.1)	1.4(0.2)	$< 0.01 \ (< 0.01)$
Top quark	$0.1 - 0.2 \ (0.1 - 0.2)$	$0.1 - 0.2 \ (0.1 - 0.2)$	0.06 (0.08)
Diboson	0.1 (0.1)	0.1 (0.1)	0.14 (0.08)

- All background contributions except for the multi-jet background are estimated from simulation (Powheg+Pythia for *W*/*Z* and top quarks, Sherpa for dibosons).
- $\cdot\,$ Sum of background contributions in W boson samples is between 3 and 6%.
- Largest background contributions to $W^{\pm} \rightarrow e^{\pm}\nu$ samples come from $W^{\pm} \rightarrow \tau^{\pm}\nu$ production and the multi-jet background.
- $W^{\pm} \rightarrow \mu^{\pm} \nu$ boson backgrounds are dominated by electroweak processes $(Z \rightarrow \mu^{+} \mu^{-}, W^{\pm} \rightarrow \tau^{\pm} \nu).$
- Z bosons backgrounds are at the level of 0.3% for both channels.

- *W/Z* boson **production cross-sections** are measured in **fiducial phase-space volumes**:
 - + p_{T}^{ℓ} > 25 GeV, $|\eta_{\ell}|$ < 2.5, p_{T}^{ν} > 25 GeV, m_{T} > 40 GeV (W bosons)
 - + p_{T}^{ℓ} > 20 GeV, $|\eta_{\ell}|$ < 2.5, 66 < $m_{\ell\ell}$ < 116 GeV (Z bosons)
- Cross-sections are calculated as follows:

$$\sigma_{W^{\pm} \to \ell^{\pm} \nu[Z \to \ell^{+} \ell^{-}]}^{\text{fid}} = \frac{N_{W[Z]} - B_{W[Z]}}{C_{W[Z]} \cdot L_{\text{int}}}$$

- $N_{W[Z]}$ and $B_{W[Z]}$ are the number of selected events in data and the expected number of background events, respectively.
- *C*_{W[Z]} are correction factors evaluated from simulation which account mainly for detector-related inefficiencies.
- $\cdot \, \, {\it L}_{\rm int}$ is the integrated luminosity of the dataset.
- Lepton charge asymmetry defined using differential W boson cross-sections:

$$A_{\ell}(|\eta_{\ell}|) = \frac{\mathrm{d}\sigma_{W^+}/\mathrm{d}|\eta_{\ell}| - \mathrm{d}\sigma_{W^-}/\mathrm{d}|\eta_{\ell}|}{\mathrm{d}\sigma_{W^+}/\mathrm{d}|\eta_{\ell}| + \mathrm{d}\sigma_{W^-}/\mathrm{d}|\eta_{\ell}|}$$

electron channels

	$\delta\sigma_{W^+}$ [%]	$\delta\sigma_{W^{-}}$ [%]	$\delta\sigma_Z$ [%]
Trigger efficiency	0.2	0.2	< 0.1
Reconstruction efficiency	0.2	0.2	0.4
Identification efficiency	0.6	0.5	1.0
Isolation efficiency	0.4	0.4	0.6
Electron $p_{\rm T}$ resolution	< 0.1	< 0.1	0.1
Electron $p_{\rm T}$ scale	0.3	0.2	0.1
Hadronic recoil calibration	0.5	0.4	-
Multi-jet background	0.7	0.8	< 0.1
Electroweak+top background	0.1	0.1	< 0.1
Data statistical uncertainty	0.6	0.7	1.4

muon channels

	$\delta \sigma_{W^+}$ [%]	$\delta\sigma_{W^{-}}$ [%]	$\delta\sigma_Z$ [%]
Trigger efficiency	1.4	1.4	0.4
Reconstruction efficiency	0.2	0.2	0.4
Isolation efficiency	0.4	0.4	0.7
Muon $p_{\rm T}$ resolution	0.1	< 0.1	< 0.1
Muon $p_{\rm T}$ scale	0.1	0.1	< 0.1
Hadronic recoil calibration	0.5	0.5	_
Multi-jet background	0.1	0.2	< 0.1
Electroweak+top background	0.1	0.2	< 0.1
Data statistical uncertainty	0.5	0.6	1.2

- Lepton- and recoil-related uncertainties are propagated through their impact on correction factors *C*_{W[Z]}.
- Largest systematic uncertainties:
 - $W^{\pm} \rightarrow e^{\pm} \nu$: multi-jet background, identification efficiency
 - $\cdot \ {\it W}^{\pm} \rightarrow \mu^{\pm} \nu$: trigger efficiency
- For Z boson cross-sections, statistical uncertainties are comparable with systematic ones.
- The most significant source of uncertainty in all channels (not shown in the tables) is luminosity calibration (1.9%).

W bosons: channel comparison

- Cross-sections measured in the muon channels are systematically slightly larger than in the electron channels.
- Results from electron and muon channels are combined, accounting for uncertainty **correlations** across channels and measurement bins
- Combination yields: $\chi^2/\text{DOF} = 19.3/10 \ (W^+), \ \chi^2/\text{DOF} = 15.1/10 \ (W^-)$

W bosons: channel comparison

- Lepton charge asymmetry is calculated from cross-sections presented on the previous slide, separately for the electron/muon channels and for the combined results.
- Uncertainties are dominated by the statistical components.
- In general, a relatively **good agreement between the channels** is observed.

Z bosons: channel comparison

- Similarly to *W* bosons, the cross-sections measured in the muon channel are systematically slightly larger than in the electron channel.
- Combination yields: χ^2 /DOF = 3.0/5 (Z), χ^2 /DOF = 37.5/25 (global)
- In view of the slight but systematic discrepancy between channels, the **uncertainties** on the combined results are scaled such that the global χ^2 /DOF = 1.

- Theoretical predictions calculated at NNLO accuracy in QCD using an optimised version of DYNNLO 1.5.
- Various PDF sets used to calculate predictions:
 - NNPDF3.1 (includes precise ATLAS $\sqrt{s} = 7$ TeV W/Z boson measurements)
 - CT14nnlo, MMHT2014, HERAPDF2.0
- **Predictions of integrated fiducial cross-sections agree with data** within uncertainties, but are systematically lower by a few percent (except for HERAPDF2.0).

PDF set	$\sigma^{\rm fid}_{W^+}[{\rm pb}]$	$\sigma^{\rm fid}_{W^-}[{\rm pb}]$	$\sigma_Z^{\rm fid}[{\rm pb}]$	$\sigma_{W^+}^{\rm tot}[{\rm pb}]$	$\sigma_{W^-}^{\rm tot}[{\rm pb}]$	$\sigma_Z^{\rm tot}[{\rm pb}]$
CT14 NNLO	2203_{-64}^{+62}	1379_{-42}^{+34}	356^{+8}_{-10}	4299_{-113}^{+112}	2862_{-77}^{+63}	648^{+14}_{-16}
MMHT2014	2244_{-39}^{+40}	1393^{+24}_{-28}	363^{+6}_{-5}	4357^{+75}_{-73}	2902_{-57}^{+49}	660^{+11}_{-10}
NNPDF3.1	2186 ± 45	1344 ± 29	355 ± 7	4301 ± 87	2828 ± 62	645 ± 13
HERAPDF2.0	2291^{+92}_{-61}	1440_{-27}^{+42}	369^{+14}_{-7}	4459^{+180}_{-108}	3042^{+94}_{-56}	675_{-13}^{+24}
Additional uncertainties						
$\alpha_{\rm S}$	± 17	$^{+13}_{-11}$	$^{+3}_{-2}$	$^{+31}_{-29}$	$^{+27}_{-22}$	± 5
$\mu_{\rm\scriptscriptstyle R},\mu_{\rm\scriptscriptstyle F}$ scales	$^{+18}_{-11}$	$^{+11}_{-8}$	± 1	$^{+25}_{-36}$	$^{+13}_{-15}$	$^{+3}_{-4}$
Data	2266 ± 53	1401 ± 33	374.5 ± 8.6	_	_	

W bosons: differential cross-sections

- · Lepton pseudorapidity differential cross-sections measured in fiducial phase-space volume.
- **Predictions (except using HERAPDF 2.0)** systematically tend to **underestimate measured cross-sections**, but deviations are at the level of 1-2*σ*.

W bosons: lepton charge asymmetry

- Systematic uncertainties, which are partially correlated between W^+ and W^- boson measurements, are **reduced** to a large extent.
- Good agreement of predictions from all considered PDF sets with measured asymmetry.

Z bosons: differential cross-sections

- Rapidity differential cross-sections measured in fiducial phase-space volume.
- At central rapidities

 (|y_{ℓℓ}| < 1) all predictions
 tend to underestimate
 measured cross-sections.
- At larger rapidities good agreement with most considered PDF sets.

- Our group at AGH is also working on a **measurement of** *W* **boson production in Pb+Pb collisions** at the same centre-of-mass energy.
- Preliminary results exist already for the muon channel.
- The **measurement in** *pp* **collisions** will serve as an **important reference** to verify if any nuclear modifications are observed in Pb+Pb collisions.

W/Z bosons at $\sqrt{s} = 13$ TeV

W/Z bosons: fiducial and total cross-sections

- $\cdot\,$ Similar measurement strategy as for $\sqrt{s}=5.02$ TeV analysis.
- Fiducial cross-sections (W bosons: $m_T > 50$ GeV, Z bosons: $p_T^{\ell} > 25$ GeV) tend to be slightly underestimated by some PDF sets, but no large deviations observed.

• Predictions for total cross-sections follow a similar pattern.

W/Z bosons: fiducial cross-section ratios

- Ratio of W^+/W^- fiducial cross-sections is overestimated by most PDF sets.
- Predicted ratios of W^{\pm}/Z fiducial cross-sections show a better agreement with data.
- Differential cross-sections not measured in this analysis.

W/Z bosons at $\sqrt{s} = 7$ TeV

W bosons: differential cross-sections

- · Similar measurement strategy as for $\sqrt{s} = 5.02$ TeV analysis (same fiducial phase-space).
- By far the most precise of the presented measurements (sub-percent uncertainties).
- Most PDF sets lead to **predictions** which **deviate systematically** from the measured cross-sections by a few percent.
- ABM12 predictions describe the data best.

W bosons: lepton charge asymmetry

- Good agreement of predictions from most considered PDF sets with measured asymmetry.
- Only MMHT2014 tends to underestimate the data for central rapidities ($|\eta_{\ell}| < 1$).

Z bosons: differential cross-sections

- For central rapidities

 (|y_{ℓℓ}| < 1), measured
 cross-sections are larger
 than all predictions (best
 agreement for HERAPDF 2.0).
- For larger rapidities, the agreement with most considered PDF sets improves.

PDF analysis: profiling

- The profiling method allows to estimate the impact of the measured *W*/*Z* boson differential cross-sections on existing PDF sets.
- When including these results, the ratio $R_s(x) = (s(x) + \bar{s}(x))/(\bar{u}(x) + \bar{d}(x))$ increases significantly.
- This effect comes from an increase of the s quark PDF and a simultaneous slight decrease of \bar{u} and \bar{d} PDFs.

PDF analysis: global fit

- A global fit of PDFs is also perfomed, taking into account HERA DIS data and the measured *W/Z* boson differential cross-sections.
- For the resulting ATLAS-epWZ16 PDF set, R_s is evaluated to be close to unity at $Q^2 = 1.9 \text{ GeV}^2$ and x = 0.023.
- Other PDF sets exhibit significantly lower values, which suggest that the s quark density is suppressed in this kinematic region.

Summary and outlook

Summary

• ATLAS has performed **high-precision measurements of** *W***/***Z* **boson production** using LHC Run 1 ($\sqrt{s} = 7$ TeV) and Run 2 ($\sqrt{s} = 5.02$, 13 TeV) data.

arXiv:1810.08424

- Many **dedicated perfomance studies** were **necessary** to achieve a sub-percent or few-percent level precision.
- Similar observations made at all collision energies: fiducial cross-sections predicted using various PDF sets tend to deviate slightly from data.
- The effect is most prominent for differential Z boson cross-sections in $|y_{\ell\ell}| < 1$.
- The measurement at $\sqrt{s} = 7$ TeV includes a **re-analysis of PDFs** showing that the **s quark contribution is underestimated** by most popular PDF sets.

Outlook

- A much larger dataset at $\sqrt{s} = 5.02 \text{ TeV}$ ($\sim 260 \text{ pb}^{-1}$) and additional low-pileup datasets at $\sqrt{s} = 13 \text{ TeV}$ ($\sim 340 \text{ pb}^{-1}$) are currently being analysed.
- Full high-pileup $\sqrt{s} = 13$ TeV dataset ($\sim 140 \text{ fb}^{-1}$) is also planned to be analysed.
- $\cdot \,$ Very precise $\mathit{W/Z}$ boson measurements from ATLAS to come!

Additional slides

CMS *W* boson measurement at $\sqrt{s} = 8$ TeV

