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Abstract

The successful application of relativistic hydrodynamics to the 
physics of quark-gluon plasma has inspired many theoretical 
studies of late time behaviour of systems initially far from 
equilibrium. There has been a growing appreciation of the role of 
non-hydrodynamic modes both at the microscopic level and in 
models formulated in the language of hydrodynamics. I will review 
this avenue of research including some very recent 
developments.  



Introduction
• Post 2000: relativistic hydrodynamics becomes a key element 

of the theoretical picture of heavy-ion collisions 

• 10 years ago: hydrodynamics describes small, long-lived  
perturbations of equilibrium 

• Today: hydrodynamics is seen to work much more generally, 
but it is not quite clear why    

• Key idea: causality requires non-hydrodynamic modes which 
act as a UV-regulator 

• Important consequences: domain of applicability, attractors, 
systematic extensions of the hydrodynamic scheme



Origin of gapped modes: diffusion
Exact current conservation law  
 

Constitutive relation in the gradient expansion  
 

Keeping just the first order term gives the diffusion equation  
 

Modes (ungapped - “hydrodynamic”)

∂tρ + ⃗∇ ⋅ ⃗J = 0

⃗J = D ⃗∇ ρ + …

∂tρ + DΔρ = 0

ρ = Ae−iωt+ikz, ω = − iDk2



The “group velocity” is unbounded (and higher orders don’t help)  
 
 

Introduce a relaxation time as a regulator: 
 
 

This generates gradients of all orders:  
 
 

The dispersion relation becomes  
 

τR∂t
⃗J + ⃗J = D ⃗∇ ρ + …

⃗J = D ⃗∇ ρ + τR∂t (D ⃗∇ ρ) + …

−τRω2 + iω − Dk2 = 0

v =
∂ω
∂k



Solutions 
 

• Diffusive mode (old) 
 

• Gapped/transient mode (new)  
 

The relaxation time acts as a regulator: 

The “pole collision” sets the scale for regulator independence.

v =
∂ω
∂k

∼ D/τR ≤ 1

ω− ∼
i

τR
+ iDk2 + …

ω+ ∼ − iDk2 + …

ω± =
1

2τR (−i ± −1 + 4DτRk2)

ω+ = ω− ⟺ 1/kc = 2 DτR



Linear perturbations
Perturbations of equilibrium lead to linear equations of the form  
 

Solutions of the form of normal modes  
 

Dispersion relations are contained in  
 

Each solution gives rise to a quasinormal mode. 

In hydro theories this P is a polynomial; in microscopic theories 
this is in general not the case. 

δΦ ∼ e−iωt+ikz

LδΦ = 0

P(ω, k) = 0



Relativistic Hydrodynamics
Conservation equation  
 

Constitutive relations (needed a closed system of equations)  
 

First order: relativistic Navier-Stokes theory  
 

Dispersion relations for linearised perturbations reveal purely 
hydrodynamic modes.

∇αTαβ = 0

Tμν = ℰuμuν + 𝒫(ℰ)(gμν + uμuν) + Πμν

Πμν = − ησμν, σμν = ∂μuν + ⋯

σμν = ∂μuν + ⋯



Sound channel dispersion relation 

so this theory is acausal and needs a “UV-completion” to avoid 
conflict with causality. 

There are two known ways to do it: 

• Mueller; Israel Stewart (& generalisations) 

• Bemfica Disconzi Noronha; Kovtun 

In both cases the dispersion relations show regularisation of group 
velocity due to a relaxation time parameter so they can be viewed 
as different UV-regularisations of relativistic Navier-Stokes 
hydrodynamics.

ω =
η
Ts

k2 ⟹ v = 2
η
Ts

k



Mueller Israel Stewart theory
The same trick as before (other choices possible!):  

 
implies contributions to all orders in gradients  
 

and introduces purely-damped non-hydrodynamic modes. 

 

Group velocity

(τπ𝒟 + 1) Πμν = − ησμν + …

Πμν = − ησμν + τπ𝒟(ησμν) + …

ω(±)
H = ± k

3
−

2i
3 T

η
s

k2 + … ωNH = − i ( 1
τπ

−
4

3 T
η
s

k2) + …

v =
1

3
1 + 4

η/s
Tτπ

< 1 ⟺ Tτπ > 2η/s



BDNK causal first-order theory
The most general form of the EM tensor at first order is  
 
 
 
with constitutive relations  
 
 
 
 
 
 
 
Usually one uses freedom to redefine the hydrodynamic fields by 
gradient terms to impose the Landau-frame conditions which 
eliminate the longitudinal contributions to the first order EMT. 

Tμν = ℰuμuν + 𝒫Δμν + (𝒬μuν + 𝒬νuμ) + 𝒯μν

ℰ = ϵ + ε1
·T/T + ε2∂λuλ

𝒫 = p + π1
·T/T + π2∂λuλ

𝒬μ = θ1
·uμ + θ2/T Δμλ∂λT

𝒯μν = − ησμν



Kovtun (following earlier work by Bemfica, Disconzi and Noronha) 
finds that if we refrain from imposing a frame choice then the 
resulting first order hydro equations are causal!  

This does not mean that the theory contains hydro modes alone. 
Indeed, linearisation around equilibrium in the shear channel 
leads to the branch of the spectral curve  
 
 
 
which is of the same form as in MIS theory and leads to a gapped 
mode with frequency 
 
 
 
 
The story is similar in the sound channel.

−θ1ω2 − iTs ω − ηk2 = 0

ωNH = − i ( Ts
θ1

+
η
Ts

k2) + …



Late time behaviour in MIS hydro
The shear channel dispersion relation (after some rescaling) is  
 

The Green’s function of the corresponding linear problem solves  
 
 
 
It can be calculated exactly and satisfies causality constraints. 

The non-hydrodynamical mode contribution is essential  

ω± = − i ± k2 − 1

(∂2
t + 2∂t − ∂2

x)G(t, x) = δ(t)δ(x)

G(t, x) = θ(t)(I+(t, x) + I−(t, x))

I±(t, x) =
1

2π ∫
∞

0
dk

ei(kx−ω±t)

ω+ − ω−



Using standard asymptotic methods one finds that the 
hydrodynamic pole leads to  
 
 
 
 
 

up to exponentially suppressed contributions.  

This series is factorially divergent:  
 

The Borel transform can be done analytically  

Gs ≡ G(t,0) ∼
1

2π

1

t

∞

∑
k=0

akt−k

ak =
(−1)kΓ(1/2 − k)

2kΓ(1/2 + k)Γ(1 + k)

ak+1

ak
∼

k
2t

ℬ[ tGs](ξ) = ∑
n≥0

an

Γ[n + 1]
ξn =

1

2π3/2
K(ξ/2) ≡ B(ξ)



The elliptic function K has a cut on the real axis; the branch point 
is at the frequency of the non-hydrodynamic mode 

Correspondingly, the Borel sum exhibits a complex ambiguity  
 
 

The exact answer is 
 
 
 
 
 
 
 
 
The non-hydro mode contribution cancels the imaginary part!

𝒮± =
1

t ∫C±

dξ e−wξ B(ξ) =
1
2

e−t (I0(t) ± i
π

K0(t))

I+ =
1
2

e−t (I0(t) −
i
π

K0(t)) = 𝒮−

I+ + I− =
1
2

e−tI0(t) =
1
2 (𝒮+ + 𝒮−)

I− =
1
2

e−t ( i
π

K0(t)) =
1
2 (𝒮+ − 𝒮−)



Summary

• Ensuring causality in hydrodynamics seems to require the 
presence of non-hydrodynamic (gapped) modes 

• The emergence of hydrodynamic behaviour is governed by the 
decay of non-hydrodynamic transients rather than local 
equilibration 

• Late time asymptotic expansions of Green’s functions carry 
information about the non-hydrodynamic modes 

• It may be interesting and useful to formulate theories of 
hydrodynamics with specific non-hydrodynamic sectors
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