Importance of the thermodynamic fluctuations in the Gaździcki Gorenstein model

K. Zalewski Kawiory 17 XI 2017

K. Zalewski, Acta Phys. Pol. B48, 1267 (2017).

M. Gaździcki and M. Gorenstein, Acta Phys. Pol. B30(1999)2705.

The W-phase and the Q-phase

 $(1 - \lambda)V$ λV $0 \le \lambda \le 1.$

W-phase: each SU_3 octet gives $g_{WS} = 4$; $g_{WnS} = 4$

Q-phase: $g_{Qs} = 2x2x3 = 12$; $g_{Qns} = 2x12 + 2x8 = 40$

The horn

Figure 1: The *horn* structure in the energy dependence of the K^+/π^+ ratio is interpreted as evidence for the onset of deconfinement located at low CERN SPS energies. The structure was first discovered by NA49 in central Pb+Pb collisions. Surprisingly its shadow is visible in inelastic p+p interactions as indicated by the new NA61/SHINE data.

The Gaździcki Gorenstein model (simplified)

m = 0; Boltzmann statistics

$$\Omega(V, T, \mu, \lambda) = -g(\lambda)Tze^{-\beta\mu} + \lambda BV.$$

$$g(\lambda) = g_W + \lambda(g_Q - g_W); \qquad g_Q > g_W.$$

$$z = \frac{V}{2\pi^2} \int dp \ p^2 e^{-\beta p} = \frac{VT^3}{\pi^2}.$$

Evaluation of the parameter λ

$$S(\lambda) = 4g(\lambda)z.$$
 $0 \le \lambda \le 1.$

$$\overline{\epsilon} = \frac{3T^4}{\pi^2 B} g(\lambda) + \lambda; \qquad \overline{\epsilon} = \frac{E}{BV}.$$

$$\left(\frac{\partial S(\lambda)}{\partial \lambda}\right)_{V,\overline{\epsilon}} = 0.$$
 $\lambda = \frac{1}{4}(\overline{\epsilon} - 3\overline{g});$ $\overline{g} = \frac{g_W}{g_Q - g_W}.$

$$g(\lambda) = \frac{1}{4}(g_Q - g_W)(\overline{\epsilon} + \overline{g}); \qquad \overline{\epsilon} - \lambda = \frac{3}{4}(\overline{\epsilon} + \overline{g}).$$

Implications for $0 \le \lambda \le 1$

$$T = \left(\frac{\pi^2 B}{g_Q - g_w}\right)^{\frac{1}{4}}$$

T = 200MeV implies B = $607MeV \text{ fm}^{-3}$.

$$p = \overline{g}B = 534 MeV fm^{-3}.$$

Further assumptions needed to relate the dimensionless Energy density with the collision Energy.

Dependence on the collision energy

$$E = A_p \eta (\sqrt{s_{NN}} - 2m); \qquad \eta = 0.67.$$

$$V = \frac{A_p}{\rho_0} \frac{2m}{\sqrt{s_{NN}}}; \qquad \rho_0 = 0.16 fm^{-3}.$$

 $6.33 GeV \le \sqrt{s_{NN}} \le 9.40 GeV.$

 $\Delta \sqrt{s_{NN}} = 3.07 \text{GeV}.$

Beyond the thermodynamic limit

a) Thermodynamic fluctuations

b) Exact strangeness conservation R.V. Poberezhnyuk, M. Gaździcki and M.I. Gorenstein, Acta Phys. Pol. B46(2015)1991.

Thermodynamic fluctuations

$$P(\lambda) = e^{S(\lambda)}.$$

with
$$S(\lambda) = 4g(\lambda)z$$

instead of $P(\lambda) = \delta\left(\lambda - \frac{1}{4}(\overline{\epsilon} + \overline{g})\right).$
 $S(\lambda) \sim A_p$ implies $\sqrt{\sigma^2(\lambda)} \sim A_p^{-\frac{1}{2}}$

Figure 1: Dependence of the average volume fraction λ on the energy density $\epsilon = \frac{E}{V}$. For the meaning of the lines see text.

Figure 2: Dependence of the average pressure p on the energy density $\epsilon = \frac{E}{V}$. The meaning of the lines as in Fig. 1.

Figure 3: Dependence of the average temperature T on the energy density $\epsilon = \frac{E}{V}$. The meaning of the lines as in Fig. 1.

Figure 4: Dependence of the average ratio of the number of strange particles to the number of nonstrange particles on the energy density $\epsilon = \frac{E}{V}$. The meaning of the lines as in Fig. 1.

Exact strangeness conservation

R.V. Poberezhnyuk, M.Gaździcki and M. Gorenstein, Acta Physica Polonica B46(2015)1991.

$$\Omega(V,T,\mu,\lambda) = -Tg_{ns}(\lambda)z - T\log I_o(g_s(\lambda)z) + \lambda BV.$$

$$\lambda = \frac{1}{4}(\overline{\epsilon} - 3\overline{g}) - \frac{C}{A_p} \frac{\sqrt{s_{NN}}}{\overline{\epsilon} - 3\overline{g} - 4\overline{g}_s} + o(A_p^{-1}).$$

 $\Delta \lambda$ = [-.0.046, -0.051]; $\Delta \sqrt{s_{NN}}$ = [0.18GeV, 0.13GeV].

 $\Delta T = [4 MeV, 2 MeV];$ $\Delta p = [37 MeV fm^{-3}, 41 MeV fm^{-3}].$

Conclusions

At $A_p = 1$ the thermal fluctuations of λ introduce very significant corrections to the thermodynamic approximation.

These corrections decrease with increasing A_p and are very small already at $A_p = 10$.

Exact strangeness conservation gives corrections which are small down to $A_p = 1$, but introduces new features: small changes of the temperature pressure during the transition.