Measurements of the CKM angle γ at LHCb

Wojciech Krupa - WFilS AGH

19.01.2017

Seminarium Środowiskowe Fizyki Cząstek

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ u b d S

Cabibbo-Kobayashi-Maskawa (CKM) matrix

- information on the strength of flavour -

changing charged weak decays

Quark mixing matrix

CKM matrix is **NOT** diagonal. Weak interaction may change quarks flavour between generation.

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Cabibbo-Kobayashi-Maskawa (CKM) matrix

- information on the strength of flavour -

changing charged weak decays

Quark mixing matrix

CKM matrix is **NOT** diagonal. Weak interaction may change quarks flavour between generation.

It's unitarity matrix :
$$\sum_k V_{ik} V_{jk}^* = 0$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$
$$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

$$\gamma = \arg(\frac{-V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*})$$

Wolfenstein parametrization $\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ - |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{-i\beta_s} & |V_{tb}| \end{pmatrix} \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$

most interesting ones

Introduction – Type of decays

All decays (loop dominated):

- Big yield
- Big theoretical uncertainty

Tree decays:

- Small yield
- Small theoretical uncertainty

Wojciech Krupa

Tree-level measurements:

- No loops!
- No theoretical uncertainty

 $\delta \gamma / \gamma < 10^{-7}$

• No New Physics contribution!

Trees : $\gamma = 72.1^{+5.4\circ}_{-5.8}$ All : $\gamma = 65.3^{+1.0°}_{-2.5}$

Tree-level measurements:

- Small decay rate $(\sim 10^{-7})$
- Many final states
- Neutral particles (K_s^0, γ)
- Many decay channels, many observables

Trees :
$$\gamma = 72.1^{+5.4\circ}_{-5.8}$$

All : $\gamma = 65.3^{+1.0^{\circ}}_{-2.5}$

Trees

Motivation

Discrepancies between indirect and direct

measurements may indicate new physics

$B \rightarrow DK$ measurements

The value of γ can be determined by exploiting the interference between favoured $b \rightarrow c$ (Vcb) and suppressed $b \rightarrow u$ (Vub) transition amplitudes

	Method	X	$[F]_D$
B^0/B^{\pm}	ADS (mixed state)	Κ, π	[Κπ, Κπππ]
B^0/B^{\pm}	GLW (CP eigenstate)	Κ, π	[ΚΚ, ππ, ππππ]
B^{0}	Dalitz analysis	Κ, π	[<i>KK</i> , ππ]
B^0	GGSZ	<i>K</i> *0	$[K_s^0 hh]$
B^{0}/B_{s}^{0}	TD	$K^{*\pm}, K^{*0},$	[hhh, hh]

Introduction – LHCb experiment Int. J. Mod. Phys. A 30, 1530022 (2015)

LHCb Spectrometer designed to study heavy flavour physics

- Covering the pseudorapidity range (2< η <5).
- Identification : $\varepsilon(h-h) \sim 90\% \ \varepsilon_{\mu} \sim 97\%$ (low momentum)
- IP resolution : $\sigma_{IP} = 20 \ \mu$ m

momentum resolution: $\frac{\Delta p}{p} = 0.5 - 0.8 \%$

(for low momenta)

mass resolution : $\sigma(m_{B \rightarrow hh}) \approx 22 \text{ MeV}$

time resolution 45 - 55 fs

Introduction – LHCb experiment Int. J. Mod. Phys. A 30, 1530022 (2015)

Some details: Trigger

4 μ s to make a decision

collision every 25ns - pipe line

miuon detector & ECAL

VELO & T1-T3

Full information & final decision

Introduction – LHCb experiment Int. J. Mod. Phys. A 30, 1530022 (2015)

Introduction – LHCb experiment

Data:

Run 1: 2011-2013 Luminosity: 3 fb^{-1} $\sqrt{s} = 7 - 8$ TeV **Run 2:** 2015-2018 Luminosity: ~ 5 fb^{-1} $\sqrt{s} = 13 \text{ TeV}$

LHCb Integrated Recorded Luminosity in pp, 2010-2017

Introduction – Multibody decay analysis method

MVA methods

One dimension selection might be

ineffective.

Why not try multivariate approach?

Function (classifier) will divide object to class

In HEP: Signal and Background

Proper training: Representative sample

2D
 Boosted Decision Trees

- Neural Networks
- Fischer Discriminants
- Rectangular cut
- Likelihood Estimator
- Support Vector Machines

3D

MVA METHODS

Introduction – Multibody decay analysis method

Boosted Decision Tree

Tree-level structer of classifier

Leaves (at the bottom) – class

Values – regression tree

Boosting: training of trees on misclassified events by enhancing

their importance

Introduction – Multibody decay analysis method

Verification – Confusion Matrix & ROC curve

True Positives (TP) vs True Negatives (TN)

False Positives (FP) vs False Negatives (FN)

Μ	etric	S

N	Predicted: NO	Predicted: YES	
Actual: NO	TN	FP	
Actual: YES	FN	TP	

Accuracy $acc = \frac{TP+TN}{N}$ Misclassification rate $mcl = \frac{FP+FN}{N}$ Specificity $sp = \frac{TN}{m_B}$ Precision $p = \frac{TP}{n_S}$ AUC = 1 \longrightarrow perfect classification AUC = 1-0.5 \longrightarrow effective classification AUC = 0.5 \longrightarrow random classification

RESULTS

 $B \rightarrow DK$ decay

GLW Method

 $B^\pm \to D^0 K^\pm$

Gronau-London-Wyler method - D^0 decays to CP-eigenstates

$$D^{0} \rightarrow KK/\pi\pi, D^{0} \rightarrow K_{S}\pi^{0}, K_{S}\omega \dots$$
Observables:
• CP asymmetries:
$$A_{CP} = \frac{N(B^{-} \rightarrow D_{CP}^{0}K^{-}) - N(B^{+} \rightarrow D_{CP}^{0}K^{+})}{N(B^{-} \rightarrow D^{0}K^{-}) + N(B^{+} \rightarrow D^{0}K^{+})}$$

$$A_{CP} = \frac{2r_{B}\sin(\delta_{B})\sin(\gamma)}{1 + r_{B}^{2} \pm 2r_{B}\cos(\delta_{B})\cos(\gamma)}$$

$$B^{-} \qquad KK/\pi\pi X$$

 $\rightarrow \mathcal{CP}|hh\rangle = \pm |hh\rangle$

 $B^+ \to DK^+$

ADS Method

Phys. Rev. Lett. 78 (1997) 3257

 $B^\pm \to D^0 K^\pm$

Atwood, Dunietz, Soni method: $D^0 o K\pi$

- B favoured decay and D suppressed Decay
- B suppressed decay and D favoured decay

Larger interference effects as both amplitudes are of similar sizes.

$$A_{CP} = \frac{N(B^- \to [K^+\pi^-]_{D^0}K^-) - N(B^+ \to [K^-\pi^+]_{D^0}K^+)}{N(B^- \to [K^+\pi^-]_{D^0}K^-) + N(B^+ \to [K^-\pi^+]_{D^0}K^+)}$$

$$A_{CP} = \frac{2r_B r_D \sin(\delta_B + \delta_d) \sin(\gamma)}{1 + r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_d) \cos(\gamma)}$$

$$R_{ADS} = \frac{N(B^- \to [K^+ \pi^-]_{D^0} K^-) + N(B^+ \to [K^- \pi^+]_{D^0} K^+)}{N(B^- \to [K^- \pi^+]_{D^0} K^-) + N(B^+ \to [K^+ \pi^-]_{D^0} K^+)}$$

$$R_{ADS} = 1 + r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_d) \cos(\gamma)$$

 $B^+ \to DK^+$

The ADS measurement using an Run 1 & Run 2 data.

 $B^{\pm} \rightarrow D^0(K\pi)K^{\pm}$

B favoured \times *D* favoured amplitudes

 $B^+ \to DK^+$

The ADS measurement using an Run 1 & Run 2 data.

 $B^{\pm} \rightarrow D^0(K\pi)K^{\pm}$

favoured × suppressed amplitudes

GGSZ Method

Giri, Grossman, Soffer, Zupan Method $B^{\pm} \rightarrow D^0 K^{\pm}$ $D^0 K^$ $r_{\rm D} e^{i(\delta_D \pm \gamma)}$ $b \rightarrow c$ D decays to 3 body final states $D^0 \to K_s^0 \pi \pi$ $D^0 \rightarrow K^0_{\rm s} K K$ Dalitz Plot encodes all the kinematic $K^+\pi^- X$ B^{-} information of the decay $r_B e^{i(\delta_B \pm \gamma)}$ Each point on the Dalitz plot represents a different $\overline{D^0}K^$ $b \rightarrow u$ value of r_D and δ_D

D Dalitz plot from B decay will be a superposition of D^0 $\overline{D^0}$

• Differences between B^+ and B^- are related to $r_B \ \delta_{\rm B}$ and γ

this method requires a good understanding of strong phases in the Dalitz plane (from CLEO)

A model dependent scenario with $\, r_{\! D} \, {
m and} \, \delta_{
m D} \,$

GGSZ Method

 $B^{\pm} \rightarrow D^0 K^{\pm}$

 $r_B = 0.080^{+0.019}_{-0.021}$ $\gamma = (62^{+15}_{-14})^{\circ}$ $\delta_B = (134^{+14}_{-15})^{\circ}$

JHEP 08 (2016) 137

$$B^0 \to D^0 K^{*0}$$
 $D^0 \to K^0_s \pi \pi$

Model - dependent observation GGSZ analysis measurement using Run 1 & Run 2 data.

$$\gamma = (80^{+21}_{-22})^{\circ}$$

 $r_B = 0.39 \pm 0.13$

$$B^0 \rightarrow D^0 K^{*0}$$
 $D^0 \rightarrow K^0_s \pi \pi$, $D^0 \rightarrow K^0_s K K$

Interference of two suppressed amplitudes (comparable in magnitudes)

Model - independent observation

- Uses measured δ_D from CLEO experiment
- Independent of the D decay model.
- Sensitivity to γ obtained by comparing the distribution of events in D^0 and \overline{D}^0 Dalitz plots reconstructed in each flavour (K^{*0} decay is self-tagging)

JHEP 06 (2016) 131

The three-body self-conjugate decays $D \rightarrow KS0\pi^+\pi^-$ and $D \rightarrow K_S^0K^+K^$ designated collectively as $D \rightarrow K_S^0h^+h^-$ are accessible to both D0 and D0.

JHEP 06 (2016) 131

Model - independent observation

$$\gamma = (71 \pm 20)^{\circ}$$

 $r_{B^0} = 0.56 \pm 0.17$
 $\delta_{B^0} = (204^{+21}_{-20})^{\circ}$

Model - dependent observation with the SAME data

$$\gamma = (80^{+21}_{-22})^{\circ}$$

Results are consistent within the limits

 $B^- \rightarrow Dh^-\pi^-\pi^+$

$$B^- \rightarrow D X_S^ X_S^- \equiv K^- \pi^- \pi^+ D^0 \rightarrow KK, K\pi, \pi\pi$$

- First ADS and GLW analyses
 Run 1 & Run 2 data (3 fb⁻¹)
- γ sensitivity similar to the $B^{\pm} \rightarrow D^0 K^{\pm}$ decays.
- Dilution of interference due to the variation of the strong phase calculated in a modeldependent way by a full amplitude analysis.

Time – dependent method - $B_s^0 \rightarrow D_s^{\pm} K^{\pm}$

Requires tagging the initial B_s^0 flavour

Requires a time-dependent analysis to observe the meson oscillations

The time-dependent decay rates :

$$\begin{split} \Gamma_{B_s^0 \to f}(t) &= \left| A_f \right|^2 \left(1 + \left| \lambda_f \right|^2 \right) \frac{e^{-\Gamma_s t}}{2} \left(\cosh \frac{\Delta \Gamma_s t}{2} + D_f \sinh \frac{\Delta \Gamma_s t}{2} + C_f \cos \Delta m_s t - S_f \sin \Delta m_s t \right) \\ S_f &= \frac{2r_{D_s} K sin \left(\delta - (\gamma - 2\beta_s) \right)}{1 + r_{D_s K}^2} \qquad \qquad C_f \quad = \frac{1 - r_{D_s K}^2}{1 + r_{D_s}^2 K} \end{split}$$

 $B_{S}^{0} \rightarrow D_{S}^{\pm} K^{\pm}$

LHCb-PAPER-2017-047 – Submitted to JHEP

Time - dependent observation

 $D_s^{\pm} \rightarrow h h h$

Several experimental aspects

need to be taken into account :

- Finite decay-time resolution
- Decay-time acceptance
- Background
- Tagging efficiency

$$\gamma = (128^{+17}_{-22})^{\circ}$$

One fit with plenty of parameters

Combining γ at LHCb

Only $B \rightarrow DK$ decays : $B^{\pm} \rightarrow D^0(KK)K^{\pm} - GLW$ $B^{\pm} \rightarrow D^0(K\pi)K^{\pm}$ - ADS $B^0 \rightarrow DK^{*0}$ GGSZ $B^0 \rightarrow DK^{*0}$ MD $B_{\rm s}^0 \rightarrow D_{\rm s}^{\pm} K^{\pm} TD$ $B^- \rightarrow Dh^-\pi^-\pi^+$ GLW/ADS and more..

 $- \gamma = (76.8^{+5.1}_{-5.7})^{\circ}$

Summary

	B decay	D decay	Туре	J L	Ref.
LHCb Inputs	$B^+ \to DK^+$ $B^+ \to DK^+$ $B^+ \to DK^+$	$D \rightarrow hh$ $D \rightarrow h\pi\pi\pi$ $D \rightarrow bh\pi^{0}$	GLW/ADS GLW/ADS	3 fb ⁻¹ 3 fb ⁻¹ 2 fb ⁻¹	[arXiv:1603.08993] [arXiv:1603.08993] [arXiv:1504.05442]
	$B^+ \rightarrow DK^+$ $B^+ \rightarrow DK^+$ $B^0 \rightarrow D^0 K^{*0}$	$D \rightarrow K_{\rm S}^{0}hh$ $D \rightarrow K_{\rm S}^{0}K\pi$ $D \rightarrow K\pi$	GGSZ GLS ADS	3 fb^{-1} 3 fb^{-1} 3 fb^{-1}	[arXiv:1405.2797] [arXiv:1402.2982] [arXiv:1407.3186]
	$B^+ \to DK^+\pi\pi$ $B^0_s \to D^{\mp}_s K^{\pm}$ $B^0 \to D^0 K^+\pi^-$	$D \rightarrow hh$ $D_s^+ \rightarrow hhh$ $D \rightarrow hh$	GLW/ADS TD GLW-Dalitz	3 fb ⁻¹ 1 fb ⁻¹ 3 fb ⁻¹	[arXiv:1505.07044] [arXiv:1407.6127] * [arXiv:1602.03455]
	$B^0 \rightarrow D^0 K^{*0}$ Decay	$D \rightarrow K_{\rm S}^{\rm s} \pi \pi$ Parameters	GGSZ Source	3 fb ⁻¹	[arXiv:1604.01525] Ref.
Auxilliary Inputs	$D^0 - \overline{D}^0$ mixing		HFIAv	12	[arXiv:1412.7515]
	$D \to K\pi\pi\pi$ $D \to \pi\pi\pi\pi$ $D \to K\pi\pi^{0}$	$ \begin{pmatrix} \delta_D, \kappa_D, r_D \\ (F^+) \\ (\delta_D, \kappa_D, r_D) \end{pmatrix} $	CLEO+LHCb CLEO CLEO+LHCb	-	[arXiv:1602.07430] * [arXiv:1504.05878] [arXiv:1602.07430]
	$D \rightarrow hh\pi^0$ $D \rightarrow K_0^0 K\pi$	(F ⁺) (δρ. κρ)	CLEO	-	[arXiv:1504.05878] [arXiv:1203.3804] *
	$D \rightarrow K_{S}^{0}K\pi$	(r_D)	CLEO	-	[arXiv:1203.3804]
	$D \rightarrow K_{\rm S} K \pi$ $B^0 \rightarrow D^0 K^{*0}$	(r_D) $(\kappa_B, \bar{R}_B, \bar{\Delta}_B)$	LHCb	-	[arXiv:1509.06628]
	$B_s^0 \rightarrow D_s^+ K^-$	(ϕ_s)	LHCb	-	[arXiv:1411.3104]
Com	bination:				[arXiv:1611.03076]

QUESTIONS?

BACKUP

LHCb – Upgrade

B_s^0 meson oscillation

Wojciech Krupa

B_s^0 meson oscillation

Opis parametrów

 $A_f = \langle f | T | B_s^0 \rangle$, $\bar{A}_{\bar{f}} = \langle \bar{f} | T | \bar{B}_s^0 \rangle$

 $\bar{A}_{f} = \langle f | T | \bar{B}_{s}^{0} \rangle \quad A_{\bar{f}} = \langle \bar{f} | T | B_{s}^{0} \rangle$

$$D_{f} = \frac{2Re\lambda_{f}}{1+\left|\lambda_{f}\right|^{2}} \quad , D_{\bar{f}} = \frac{2Re\bar{\lambda}_{\bar{f}}}{1+\left|\bar{\lambda}_{\bar{f}}\right|^{2}}$$

$$C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}$$
 $C_{\bar{f}} = \frac{1 - |\bar{\lambda}_{\bar{f}}|^2}{1 + |\bar{\lambda}_{\bar{f}}|^2}$

$$S_f = \frac{2Im\lambda_f}{1+\left|\lambda_f\right|^2} \qquad S_{\bar{f}} = \frac{2Im\bar{\lambda}_{\bar{f}}}{1+\left|\bar{\lambda}_{\bar{f}}\right|^2}$$

Future

