

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

1/29

$\begin{array}{c} \mbox{Measurement of light-by-light scattering in} \\ \mbox{ATLAS} \end{array}$

Marcin Guzik

AGH University of Science and Technology, Cracow

Seminarium środowiskowe Fizyki Cząstek Białasówka 21 April 2017

Electromagnetic interactions in Pb+Pb collisions

[Fermi, Nuovo Cim. 2 (1925) 143]
 [Weizsacker, Z. Phys. 88 (1934) 612]
 [Williams, Phys. Rev. 45 (10 1934) 729]

Equivalent Photon Approximation (EPA)

$$\sigma_{A_{1}A_{2}(\gamma\gamma)\to A_{1}A_{2}X}^{EPA} = \iint d\omega_{1}d\omega_{2} n_{1}(\omega_{1}) n_{2}(\omega_{2}) \sigma_{\gamma\gamma\to X}(W_{\gamma\gamma})$$

with
$$n(b,\omega) = \frac{Z^2 \alpha_{em}}{\pi \omega} \left| \int dq_{\perp} q_{\perp}^2 \frac{F(Q^2)}{Q^2} J_1(bq_{\perp}) \right|^2$$

 $Q^2 < \frac{1}{R^2} \text{ and } \omega_{max} \approx \frac{\gamma}{R}$

<ロ > < 合 > < 言 > < 言 > こ < つ < ? 2/29

LHC as a photon-photon collider

pp collisions

Pros

- harder EPA γ spectrum $(\omega_{\max} \sim \text{TeV})$
- more data available ($\sim 35 \, \text{fb}^{-1}$)

Cons

- large pile-up (multiple interactions per bunch crossing)
- problems with triggering on low p_T objects

Pb+Pb collisions

Pros

- AA $(\gamma\gamma)$ x-sec $\propto Z^4$
- gluonic x-sec $\propto A^2$ \Rightarrow lower QCD bkg.
- low pile-up (< 1%)

Cons

- softer EPA γ spectrum $(\omega_{\rm max} \sim 0.1 {\rm TeV})$
- relatively small data sample

Motivation

- first direct observation of $\gamma\gamma \to \gamma\gamma$ scattering
- previous indirect measurements used:
 - a) multi-photon Breit-Wheeler reaction

$$\left(\omega+\mathrm{n}\omega_{0}
ightarrow\mathrm{e^{+}e^{-}}
ight)$$
 [PRL 79 (1997) 1626

- b) photon splitting
- c) Delbrück scattering

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Positron Production in Multiphoton Light-by-Light Scattering

Physical Review Letters 79, 1626 (1997)

ter subtracting the laser-off

positron rate

Abstract

A signal of 106 \pm 14 positrons above background has been observed in collisions of a low-emittance 46.6 GeV electron beam with trawatt pulses from a Nd:glass laser at 527 nm wavelength in an experiment at the Final Focus Test Beam at SLAC. The positrons are interpreted as arising from a twostep process in which laser photons are backscattered to GeV energies by the electron beam followed by a collision between the high-energy photon and several laser photons to produce an electron-positron pair. These results are the first laboratory evidence for inelastic light-by-light scattering involving only real photons. [S0031-9007(97)04008-8]

< □ ▷ < 큔 ▷ < 흔 ▷ < 흔 ▷ = ∽ < ⊙ < ↔ 5/29

Scattering of 1.3 Mev Gamma-Rays by an Electric Field [Phys. Rev. 90, 720 (1953)]

FIG. 1. Experimental arrangement.

FIG. 2. The cross section in millibarns per steradian for the elastic scattering of 1.33-Mev gamma-rays by lead. The curve marked total scattering is a very rough estimate of Rayleigh, Thomson, and potential_scattering combined.

 Experimental investigation of high-energy photon splitting in atomic fields

DATA	TARGET	$Q, 10^9$	${ m N}_{arphi>150^\circ}$	${ m N}_{arphi < 150^\circ}$
Experiment	$Bi_4Ge_3O_{12}$	1.63	$336{\pm}18$	82 ± 9
Experiment	no target	0.37	10 ± 3	10 ± 3
MC photon splitting	$Bi_4Ge_3O_{12}$	6.52	$364{\pm}10$	72 ± 5
MC Delbrück scattering	$Bi_4Ge_3O_{12}$	1.63	2 ± 1	16 ± 4
MC other backgrounds	$Bi_4Ge_3O_{12}$	1.63	0	16 ± 4

$\sum_{i=1}^{n}$

The LHC and the ATLAS detector

The ATLAS detector components

LbyL - Photon Identification

γ cuts: $\, E_T > 3 \, {\rm GeV}, \, |\eta| < 2.37$

Shower shape variables used to γ PID

- $E_{ratio} \equiv ratio$ of the energy difference associated with the largest and second largest energy deposits to the sum of these deposits in the first layer of EM calo
- $f_1 \equiv$ fraction of energy reconstructed in the first layer with respect to the total energy of the cluster
- $W_{eta2} \equiv$ lateral width of the shower in the middle layer

Search for light-by-light scattering

Trigger

- total E_T in calorimeter between 5 and 200 GeV
- no more than one hit in inner MBTS
- less than 10 hits in the pixel detector

Main sources of bkg.

- Central Exclusive Production (CEP) $gg \rightarrow \gamma \gamma$
- misidentification of electrons from $\gamma\gamma \rightarrow ee$

Event Selection

- two photons with $E_T > 3 \text{ GeV}, |\eta| < 2.37$
- no tracks from IP

•
$$m_{\gamma\gamma} > 6 \,GeV, \, p_T^{\gamma\gamma} < 2 \,GeV$$

• Aco =
$$\left(1 - \frac{\Delta\phi}{\pi}\right) < 0.01$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 → の 9

MCID	Process	Generator	Events	Mass range	Generator-level cuts	σ
420060	$\gamma\gamma ightarrow \gamma\gamma$	HepMCAscii	95k	$m>4~{\rm GeV}$	$p_{\mathrm{T}}^{\gamma} > 2 \text{ GeV}, \eta^{\gamma} < 2.7$	$147\pm30~\rm{nb}$
420052	$\gamma\gamma ightarrow e^+e^-$	Starlight	1M	$m > 4 { m ~GeV}$	$p_{\rm T}^{e} > 1 {\rm GeV}, \eta^{e} < 2.7$	$171 \pm 34 \ \mu b$
420061	$gg ightarrow \gamma \gamma$	Superchic2	50k	$m > 4 { m ~GeV}$	$p_{\rm T}^{\gamma} > 2 \text{ GeV}, \eta^{\gamma} < 2.7$	$440\pm220~\rm{nb}$
420062	$\gamma\gamma ightarrow q \bar{q}$	Herwig++	100k	$m>4~{\rm GeV}$	$p_{\rm T}^q > 2 \text{ GeV}, \eta^q < 2.8$	$180\pm36~\mu{\rm b}$

More about background $\gamma \gamma \rightarrow e^+e^-$

- precision limited by the data statistic
- conservative uncertainty of 25% assigned to MC

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

Search for light-by-light scattering

Run: 287924 Event: 106830493 2015-12-12 19:41:56 CEST

Trigger efficiency $(\gamma \gamma \rightarrow e^+e^-)$

- independent trigger: coincidence of signals in both ZDC sides and a requirement on the total E_T in the calorimeter below 50 GeV.
- events with only two reconstructed tracks and two EM energy clusters (with cl Aco < 0.2)
- about 70% at $\left(E_{T}^{cl1} + E_{T}^{cl2}\right) = 6 \text{ GeV}$ to 100% above 9 GeV
- error function parametrisation used to reweight the MC
- MBTS veto studied using supporting trigger (98 ± 2) %

Photon reconstruction efficiency studies

Search for light-by-light scattering

Photon Performance Studies

- trigger efficiency studies
- γ reconstruction with hard bremsstrahlung
- γ PID with FSR radiation
- γ energy scale and resolution

Systematic Uncertainty
dominated by:
• γ reco
• γ PID

Source of uncertainty	Relative uncertainty		
Trigger	5%		
Photon reco efficiency	12%		
Photon PID efficiency	16%		
Photon energy scale	7%		
Photon energy resolution	11%		
Total	24%		
・ロト ・四ト ・ヨト ・ヨ	▶ ≣ ∽ ९.৫ 19.		

Results: data - 13 event, expected - 7.3 signal and 2.6 bkg. events								
Selection	$\gamma \gamma \rightarrow e^+ e^-$	CEP $gg \rightarrow \gamma\gamma$	Hadronic	Other	Total	Signal	Data	
			fakes	fakes	background			
Preselection 74 4.7		6	19	104	9.1	105		
$N_{\rm trk} = 0$	$N_{\rm trk} = 0$ 4.0		6	19	33	8.7	39	
$p_{\rm T}^{\gamma\gamma} < 2 { m ~GeV}$	3.5	4.4	3	1.3	12.2	8.5	21	
Aco < 0.01	1.3	0.9	0.3	0.1	2.6	7.3	13	
Uncertainty	0.3	0.5	0.3	0.1	0.7	1.5		
Uncertainty 0.3 0.5 Uncertainty 0.3 0.5 14 \rightarrow Data, 480 µb ³ ATLAS 12 $\gamma\gamma \rightarrow \gamma\gamma$ MC 12 $\gamma\gamma \rightarrow e^{+}e^{+}$ MC 10 $GEP \gamma\gamma$ MC Signal selection no Aco requirement 6 4 2 0 0.1 0.02 0.03 0.04 0.05 0.0 $\gamma\gamma$ acoplanarity			S. 0 \ strange T	→ Data, ¬YT→Y ¬Y→e ⊂ CEP ↑ 0.5	480 μb ⁻¹ ATLAS γ MC re MC Signal s with Acc 	s _{NN} =5.02 election 0 < 0.01	TeV	

р 1 0 011 Ŧ

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - わへで

Ŷ

Results:

- significance of 4.4σ estimated using profile likelihood method (expected significance of 3.8σ)
- x-sec measured in fiducial region of $p_T^{\gamma} > 3 \text{ GeV}, |\eta^{\gamma}| < 2.4, m_{\gamma\gamma} > 6 \text{ GeV}, p_T^{\gamma\gamma} < 2 \text{ GeV}, \text{ Aco} < 0.01 \\ \sigma = 70 \pm 20 \text{ (stat.)} \pm 17 \text{ (syst.) nb}$

SM predictions: $45 \pm 9 \, \rm nb ~([PRL~111~(2013)~080405]),~49 \pm 10 \, \rm nb ~([PRC~93~(2016)~no.4,~044907])$

BSM Physics in HI - Axion Search With UPC [arXiv:1607.06083]

BSM Physics in HI - Axion Search With UPC [arXiv:1607.06083]

BSM Physics in HI - Axion Search With UPC [arXiv:1607.06083]

BSM Physics in HI - Axion Search With UPC

LbyL Scattering Constraint on Born-Infeld Theory [arXiv:1703.08450]

- limit on Born-Infeld scale $M = \sqrt{\beta} \gtrsim 100 \text{ GeV} 5$ orders of magnitude grater than the previous one from PVLAS
- in case of Born-Infeld SM extention with U (1)_Y realized nonlineary $M_Y = \cos \theta_W M \gtrsim 90 \, GeV$
 - such theory has finite-energy electroweak monopole solution less constrained by higgs than in other extensions of SM which because of $M_Y \rightarrow M_{monopole} \gtrsim 11 \, {\rm TeV}$ is out of reach at the LHC

◆□ → ◆□ → ◆目 → 目 → のへで

28/29

- The first direct evidence for $\gamma\gamma \rightarrow \gamma\gamma$ scattering with significance of 4.4σ has been reported.
 - improvements in the precision expected with more Pb+Pb data to be collected in 2018
- This result has already been used by J. Ellis et al. [arXiv:1703.08450] to derive the limits on Born-Infeld theory
- According to S. Knapen et al. [arXiv:1607.06083] UPC data can be used in BSM searches eg. for ALP

◆□ → ◆□ → ◆目 → 目 → のへで

Thank You for Your Attention!

