Kaon-kaon interaction in the reactions  $e^+ e^- \rightarrow K^+ K^- \gamma$  and  $e^+ e^- \rightarrow K^0 \overline{K}^0 \gamma$ 

Reference: Phys. Rev. D 98, 054013 (2018) arXiv:1809.00687 [hep-ph]

Authors:

L. Leśniak, F. Sobczuk, M. Silarski and F. Morawski

Institute of Physics, Jagiellonian University, Kraków

# Motivation

- 1. The S-wave kaon-kaon interaction near the threshold is unknown.
- Masses of the scalar resonances f<sub>0</sub>(980) and a<sub>0</sub>(980) are close to the K<sup>+</sup> K<sup>-</sup> threshold.
- 3. According to the PDG (2018) estimations: the  $f_0(980)$  mass = 990 ± 20 MeV and width= 10 to 100 MeV, the  $a_0(980)$  mass = 980 ± 20 MeV and width= 50 to 100 MeV.
- 4. Other parameters of the scalar resonances  $f_0(980)$  and  $a_0(980)$ are also imprecise, for example, the branching fractions:  $f_0(980) \rightarrow \pi \pi$  dominant,  $a_0(980) \rightarrow \pi \eta$  dominant;  $f_0(980) \rightarrow K K$  seen,  $a_0(980) \rightarrow K K$  seen.
- 5. The  $\phi(1020)$  meson decays preferentially into the K<sup>+</sup> K<sup>-</sup> system in the P-wave. In the radiative decays  $\phi \rightarrow M_1 M_2 \gamma$  a pair of pseudoscalar mesons can be produced in the S-wave. The  $\phi$  decay reactions into  $\pi^+ \pi^- \gamma$ ,  $\pi^0 \pi^0 \gamma$  and  $\pi^0 \eta \gamma$  have been measured, for the  $\phi$  transition into K<sup>0</sup> K<sup>0</sup>  $\gamma$  only the upper limit 1.9 10<sup>-8</sup> is known but there are no data for the  $\phi \rightarrow K^+ K^- \gamma$ .

## Motivation to study $e^+ e^- \rightarrow K^+ K^- \gamma$

6. There are data for the radiative decay of the  $\phi(1020)$  meson into two scalar resonances:

$$\begin{split} & \Gamma(\phi \to f_0(980) \ \gamma) / \ \Gamma_{\text{total}} = (3.22 \pm 0.19) \ 10^{-4}, \\ & \Gamma(\phi \to a_0(980) \ \gamma) / \ \Gamma_{\text{total}} = (7.6 \pm 0.6) \ 10^{-5} \ . \end{split}$$

- 7. Both scalar resonances decay into the K<sup>+</sup> K<sup>-</sup> pairs, so one should observe the reaction  $e^+ e^- \rightarrow K^+ K^- \gamma$ . Here in the final state only the kaon pair interacts strongly.
- 8. It is not possible to scatter directly kaons on kaons, so the kaon interactions have been studied in the production processes using the pion beams and nucleon targets. Unfortunately the previous studies of the KK interactions in the late seventies and eighties of the XX century gave controversial results.

## Previous studies of the $\pi\pi \rightarrow KK$ amplitudes

Reactions:  $\pi^- p \rightarrow K^+ K^- n$ ,  $\pi^+ n \rightarrow K^+ K^- p$ , Argonne Lab. 1980 (Cohen et al.)  $\pi^- p \rightarrow K^0_S K^0_S n$ , Brookhaven Lab. 1982 (Etkin et al.). Application of the one-pion exchange model to extract the  $\pi \pi \rightarrow KK$ amplitudes, in particular its S-wave, izospin zero phase  $\Phi_{12}$ .

Discrepancy between the data for M<1.2 GeV down to the K K threshold.

Question: is the KK interaction at threshold attractive or repulsive?



1. Our aim: formulation of a general **theoretical model** of the radiative  $\phi$  decays.

- 2. It should allow for a coupled channel analysis of the amplitudes describing interactions of different meson-meson pairs in the final state.
- 3. With a help of such a model one can obtain an information on the threshold kaon-kaon S-wave scattering amplitude provided the relevant data are available.

## Features of the proposed model

- a) **Unitary** description of the coupled channels represented by a set of the transition amplitudes T.
- b) **Analiticity** of the amplitudes T in which all the relevant poles corresponding to the scalar resonances are present.
- c) Possible application of the model in the combined analyses of many meson-meson final states like:

1. 
$$e^+ e^- \rightarrow \pi^+ \pi^- \gamma$$
,  
2.  $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ ,  
3.  $e^+ e^- \rightarrow \pi^0 \eta \gamma$ ,  
4.  $e^+ e^- \rightarrow K^0_S K^0_S \gamma$ ,  
5.  $e^+ e^- \rightarrow K^+ K^- \gamma$ .

## **Reaction mechanisms (1)**



**FSR** – final state radiation

## **Reaction mechanisms (2)**





Ref.: G. Isidori, L. Maiani, M. Nicolaci, S. Pacetti, JHEP 0605 (2006) 049.

## **Reaction mechanisms (3)**



## Model dependence

1. Parameters of the scalar resonances found in some experimental analyses are **model dependent**.

2. Example: reaction  $e^+ e^- \rightarrow \pi^+ \pi^- \gamma$  studied by KLOE in 2006 using two models: kaon-loop (KL) and no-structure (NS). The results were:  $f_0(980)$  mass (MeV) 980-987 973-981  $g(f_0 K^+ K^-)$  (GeV) 5.0 – 6.3 1.6 – 2.3  $g(f_0 \pi^+ \pi^-)$  (GeV) 3.0 – 4.2 0.9 – 1.1

g are coupling constants

## Diagrams for the reaction $e^+ e^- \rightarrow K^+K^-\gamma$







 $T(k) = \langle K^{-}(k_{1}) K^{+}(k_{2}) | \check{T} | K^{-}(-k+p-q)K^{+}(k) \rangle$ 

$$R \sim T(k-q) - T(k)$$

11

## Amplitudes for the reaction $e^+ e^- \rightarrow K^+ K^- \gamma$

The total amplitude 
$$A = A_a + A_b + A_c + A_d$$
 is gauge invariant.  
 $A_a = 2i \int \frac{d^4k}{(2\pi)^4} \frac{J_v \varepsilon^{v^*} T(k)}{D(k) D(-k+p-q)} \qquad \varepsilon = \text{photon polarization}$ 

$$A_{b} = -4i \int \frac{d^{4}k}{(2\pi)^{4}} \frac{J_{\mu} \varepsilon^{\nu^{*}} k_{\nu} (k_{\mu} + q_{\mu}) T(k)}{D(k + q) D(k) D(-k + p - q)} \qquad p = p_{e^{+}} + p_{e^{-}}$$

$$A_{c} = -4i \int \frac{d^{4}k}{(2\pi)^{4}} \frac{J_{\mu} \varepsilon^{\nu^{*}} (k_{\nu} - p_{\nu}) k_{\mu} T(k)}{D(p - k) D(k) D(-k + p - q)}$$

$$A_{d} = -2i \int \frac{d^{4}k}{(2\pi)^{4}} \frac{J \cdot k \varepsilon^{*} \cdot \widetilde{k}}{D(k) D(p-k)} \frac{[T(k-q) - T(k)]}{q \cdot \widetilde{k}}; \quad \widetilde{k} = (0, \hat{k}); \ \hat{k} = \vec{k} / |\vec{k}|$$

 $J_{\mu} = \frac{e^{3}}{s} F_{K}(s) v(p_{e^{+}}) \gamma_{\mu} u(p_{e^{-}}) ; s = (p_{e^{+}} + p_{e^{-}})^{2} F_{K}(s) - \text{kaon form factor}$ 

 $D(k) = k^2 - m_k^2$  D(k) – inverse of the kaon propagator

## **Definitions and approximations**

 $m = K^+K^-$  effective mass;  $m^2 = (k_1 + k_2)^2$ half - off - shell amplitude :  $T(k) = \langle K^{-}(k_1) K^{+}(k_2) | \tilde{T}(m) | K^{-}(-k+p-q) K^{+}(k) \rangle; k_1^2 = k_2^2 = m_{\kappa}^2$ on – shell amplitude:  $T_{K^+K^-}(m) = \langle K^-(k_1) K^+(k_2) | \tilde{T}(m) | K^-(p_1) K^+(p_2), \quad p_1^2 = p_2^2 = m_K^2$ K<sup>+</sup>K<sup>-</sup> center-of-mass frame:  $\vec{k}_1 + \vec{k}_2 = 0$ ;  $\vec{p} = \vec{q}$ ; photon energy  $\omega = |\vec{q}| = \frac{s - m^2}{2m}$ relative kaon momentum in the final state :  $\vec{k}_{\rm f} = \frac{1}{2}(\vec{k}_2 - \vec{k}_1)$ relative kaon momentum in the initial state : kApproximation:  $T(k) \approx g(|\vec{k}|) T_{K^+K^-}(m)$  $g(|\vec{k}_f|) = 1$ **Condition:**  $s = m_{\phi}^2$ ;  $\omega \le 32$  MeV, soft photon  $\frac{[T(k-q)-T(k)]}{q\cdot\tilde{k}} \approx \frac{g(|\vec{k}-\vec{q}|)-g(|\vec{k}|)}{-\vec{q}\cdot\hat{k}} T_{K^{+}K^{-}}(m) \approx \frac{dg(|\vec{k}|)}{d|\vec{k}|} T_{K^{+}K^{-}}(m)$ Next approximation:  $\tilde{k} = (0, \hat{k}), \quad \hat{k} = \text{unit vector}$ 13

## **Approximations**, part 2

Dominance of the terms with the **positive** kaon energy  $E_k \approx \frac{m}{2}$ ;  $E_k = \sqrt{|\vec{k}|^2 + m_K^2}$ 

$$A_a + A_b + A_c \approx \vec{J} \cdot \vec{\varepsilon}^* T_{K^+ K^-}(m) I(m)$$

$$I(m) = -2\int \frac{d^3k}{(2\pi)^3} \frac{g(|\vec{k}|)}{2E_k m(m-2E_k)} [1 - 2\frac{|\vec{k}|^2 - (\vec{k} \cdot \hat{q})^2}{2p_0 E_k - s + 2\vec{k} \cdot \vec{q}}]; \ p_0 = m + \omega$$

Limit of vanishing photon energy:  $\omega \rightarrow 0$ ,  $m \rightarrow m_{\phi}$ 

$$A_{d}(0) = -[A_{a}(0) + A_{b}(0) + A_{c}(0)] \quad \text{if} \quad |\vec{k}| g(|\vec{k}|) \to 0 \text{ at } |\vec{k}| \to \infty$$

 $A_{d}(\omega)$  depends very weakly on  $\omega$ :  $A_{d}(\omega) \approx A_{d}(0)$ 

The full amplitude

$$A(m) \approx \vec{J} \cdot \vec{\varepsilon}^* T_{K^+ K^-}(m) \left[ I(m) - I(m_{\phi}) \right]$$

## **Comparison with two other approaches**

1. K<sup>+</sup>K<sup>-</sup>system as a quasi-bound state (kaons as extended objects)

F. Close, N. Isgur, S. Kumano, Nucl. Phys. B 389 (1993) 513

$$g(|\vec{k}|) = \frac{\mu^4}{(\mu^2 + |\vec{k}|^2)^2}; \quad \mu = 141 \text{ MeV}; \quad \text{note that } g(|\vec{k}| = 0) = 1$$

and  $g(|\vec{k}| \rightarrow 0 \text{ if } |\vec{k}| \rightarrow \infty.$ 

2. Point-like K<sup>+</sup>K<sup>-</sup> system

 $g(|\vec{k}|) \equiv 1$ 

N.N. Achasov, V.V. Gubin, Phys. Rev. D 64 (2001) 094016

Resonant K+K- amplitude:<br/>R=f\_0(980) or a\_0(980) $T_{res} = \frac{(c_{RK+K-})^2}{D_R(m)}$ c = coupling constant<br/>D\_R = inverse of the propagator R

**Remark:** both approaches can be treated as special cases of the present model.

# Elastic and transition K K amplitudes

Relations to the S-matrix elements:

 $T_{K^+K^-}(m) = \frac{4\pi m}{i k_f} (S_{K^+K^-} - 1)$  $T_{K^{+}K^{-} \to K^{0}\ddot{K}^{0}}(m) = \frac{4\pi m}{i k_{f}} S_{K^{+}K^{-} \to K^{0}\ddot{K}^{0}}$ Isospin decomposition: index 0 or 1 1

$$T_{K^{+}K^{-}}(m) = \frac{1}{2} [t_{0}(m) + t_{1}(m)]$$

$$T_{K^{+}K^{-} \to K^{0}\overline{K}^{0}}(m) = \frac{1}{2} [t_{0}(m) - t_{1}(m)]$$

#### Example: separable K K interactions in the S-wave

V=potential  $\lambda$ =potential strength  $\beta$ =range parameter G(k)= Yamaguchi form factor

$$\langle k_f \mid V \mid k_i \rangle = \lambda G(k_f) G(k_i)$$

$$G(k) = \sqrt{\frac{4\pi}{m_K}} \frac{1}{k^2 + \beta^2}$$

#### Separable amplitudes:

off-shell:

$$T_{off} = \langle k_f | T_{sep} | k \rangle = G(k_f) \tau(m) G(k)$$

on-shell:

$$T_{on} = \langle k_f | T_{sep} | k_f \rangle = G(k_f)\tau(m)G(k_f)$$

The function g(k)

$$g(k) = \frac{T_{off}}{T_{on}} = \frac{k_f^2 + \beta^2}{k^2 + \beta^2}$$

 $\beta$ = 1.5 GeV for isospin 0

16

## K<sup>+</sup>K<sup>-</sup> scattering and transition amplitudes



solid line :  $K^+K^- \rightarrow K^0\overline{K}^0$  transition amplitude

# The kaon loop function $I(m_{\phi})$ -I(m)

#### modulus

phase



## **Physical observables**

**Matrix elements squared** for the processes  $e^+e^- \rightarrow K^+K^-\gamma$  and  $e^+e^- \rightarrow K^0 \overline{K}^0\gamma$ are proportional to:

$$U(m) = \left(\frac{e^{3}}{s}\right)^{2} |F_{K}(s)|^{2} |I(m) - I(m_{\phi})|^{2}$$

**Photon angular distribution** in the e<sup>+</sup> e<sup>-</sup> center-of-mass frame:

$$\frac{d\sigma}{d\cos\theta_{\gamma}} \propto (1 + \cos^2\theta_{\gamma})$$

**Effective mass distribution** for the process  $e^+e^- \rightarrow K^+K^-\gamma$ 

$$\frac{d\sigma}{dm} \propto m^2 k_f U(m) |T_{K^+K^-}(m)|^2$$

**Effective mass distribution** for the process  $e^+e^- \rightarrow K^0 \overline{K}^0 \gamma$ 

$$\frac{d\sigma}{dm} \propto m^2 k_f U(m) |T_{K^+ K^- \to K^0 \overline{K}^0}(m)|^2$$

#### **Branching fractions**

 $Br(\phi \to K^+ K^- \gamma) = \sigma(e^+ e^- \to K^+ K^- \gamma, \ s \approx m_{\phi}^2) / \sigma(e^+ e^- \to \phi)$ 

$$Br(\phi \to K^0 \overline{K}^0 \gamma) = \sigma(e^+ e^- \to K^0 \overline{K}^0 \gamma, \ s \approx m_{\phi}^2) / \sigma(e^+ e^- \to \phi)$$

## Effective mass distributions for $e^+ e^- \rightarrow K^+ K^- \gamma$



### Transitions into pseudoscalar meson pairs $P_1 P_2$

**Generalization** of the model for the process  $e^+e^- \rightarrow K^+K^-\gamma$  to  $e^+e^- \rightarrow P_1P_2\gamma$ 

Inelastic  $K^+ K^- \rightarrow P_1 P_2$  amplitude:

$$T_{K^{+}K^{-} \to P_{1}P_{2}} = \frac{4\pi m}{i\sqrt{k_{f}k_{12}}} (S_{K^{+}K^{-} \to P_{1}P_{2}} - \delta_{K^{+}K^{-}, P_{1}P_{2}})$$

 $k_f = relative K^+ K^-$  momentum;  $k_{12} = relative P_1 P_2$  momentum

Application of the **unitary S- matrix** to several **coupled channels**:

1. 
$$e^+e^- \rightarrow \pi^+\pi^- \gamma$$
  
2.  $e^+e^- \rightarrow \pi^0\pi^0 \gamma$   
3.  $e^+e^- \rightarrow \pi^0 \eta \gamma$   
4.  $e^+e^- \rightarrow K^0\overline{K}^0 \gamma$   
5.  $e^+e^- \rightarrow K^+K^-\gamma$ 

## Effective mass distributions for $e^+ e^- \rightarrow K^0 \overline{K}^0 \gamma$



2. dotted line:  $g(k) = \frac{\mu^4}{(k^2 + \mu^2)^2}$ ,  $\mu = 141 \text{ MeV}$ , g(0) = 1

3. dashed line: 
$$g(k) = \frac{(k_f^2 + \mu^2)^2}{(k^2 + \mu^2)^2}$$
,  $\mu = 141 \text{ MeV}$ ,  $g(k_f) = 1$ 

### **Total cross sections and branching fractions**

| $\sigma_{e^+e^- \to K^+K^-\gamma}(pb)$ |      | $\mathrm{Br}(\phi\to K^+K^-\gamma)$ |                                                                              |
|----------------------------------------|------|-------------------------------------|------------------------------------------------------------------------------|
| 1.                                     | 1.85 | $4.47 \cdot 10^{-7}$                | $g(k) = \frac{k_f^2 + \beta^2}{k^2 + \beta^2}$ and $k_{cut} = 1 \text{ GeV}$ |
| 2.                                     | 1.29 | $3.10 \cdot 10^{-7}$                | $g(k) = \mu^4 / (k^2 + \mu^2)^2$                                             |
| 3.                                     | 3.37 | $8.13 \cdot 10^{-7}$                | $g(k) = (k_f^2 + \mu^2)^2 / (k^2 + \mu^2)^2$                                 |
| 4.                                     | 2.29 | $5.51 \cdot 10^{-7}$                | no-structure model NS                                                        |
| 5.                                     | 0.85 | $2.05 \cdot 10^{-7}$                | kaon-loop model KL                                                           |

| $\sigma_{{}_{e^+e^- \to K^0\overline{K}^0}\gamma}(pb)$ |       | $\mathrm{Br}(\phi\to K^{0}\overline{K}^{0}\gamma)$ |                                                                   |
|--------------------------------------------------------|-------|----------------------------------------------------|-------------------------------------------------------------------|
| 1.                                                     | 0.167 | $4.03 \cdot 10^{-8}$                               | $g(k) = \frac{k_f^2}{k^2 + \beta^2}$ and k <sub>cut</sub> = 1 GeV |
| 2.                                                     | 0.102 | $2.46 \cdot 10^{-8}$                               | $g(k) = \mu^4 / (k^2 + \mu^2)^2$                                  |
| 3.                                                     | 0.338 | $8.16 \cdot 10^{-8}$                               | $g(k) = (k_f^2 + \mu^2)^2 / (k^2 + \mu^2)^2$                      |

# The $\phi \rightarrow K^0 \overline{K^0 \gamma}$ branching fraction and the a<sub>0</sub>(980) pole position



 $\Gamma_{a_0(980)}$  = resonance width  $m_{a_0(980)}$  = resonance mass Branching fraction of the decay  $\phi \rightarrow K^0 \overline{K}^0 \gamma$ for  $g(k) = \frac{k_f^2 + \beta^2}{k^2 + \beta^2}$  and  $k_{cut} = 1 \text{ GeV}$ : dotted curve  $1 \cdot 10^{-8}$ , solid curve (KLOE limit)  $1.9 \cdot 10^{-8}$ , dashed curve  $3 \cdot 10^{-8}$ , dotted - dashed curve  $4 \cdot 10^{-8}$ , double dotted - dashed curve  $5 \cdot 10^{-8}$ 

The values of the branching fraction depend on the **resonance pole position**.

## Conclusions

- 1. A theoretical model of the reactions  $e^+ e^- \rightarrow K^+ K^- \gamma$  and  $e^+ e^- \rightarrow K^0 \overline{K}^0 \gamma$  has been formulated.
- 2. The strong interaction between kaons is taken into account.
- 3. The elastic  $K^+ K^-$  and the transition  $K^+ K^- \rightarrow K^0 \overline{K}^0$  amplitudes in a general form can be used.
- 4. Numerical results for the K K effective mass distributions, for the total reaction cross sections and the radiative  $\phi$  decays have been presented.
- 5. The model can be generalized to treat other coupled channel reactions with **two pseudoscalar mesons** in the final state.
- 6. Measurements of the  $e^+e^- \rightarrow K^+K^-\gamma$  process can provide a valuable information about the pole positions of the  $a_0(980)$ and  $f_0(980)$  resonances.