Studies of fluctuations and correlations in high energy heavy ion collisions

Subhasis Samanta

Jan Kochanowski University, Institute of Physics, Kielce, Poland

Outline

- ★ Introduction
- $\star\,$ Part 1: Studies of conserved charge fluctuations in Au-Au collisions with CBM
 - CBM experiment
 - Analysis details
 - Results: Net-proton cumulants
- Part2: Development of interacting HRG model using s-matrix formalism
- * Summary

Uniwersytet Jana Kochanowskiego w Kielcach

QCD phase diagram

- \star Study QCD phase diagram at high net-baryon density
 - At high net-baryon density and low temperature, first order phase transition is expected which will end at a critical point (CP)
 - CBM program supplements the Beam Energy Scan Program at RHIC, NA61 at SPS, NICA at JINR

Ref: CBM: EPJA 53, 60 (2017); PRC 74, 047901 (2006)

Observables for CP search

Cumulants

 $N_q = N_{q+} - N_{q-} \,\, {
m and} \,\, \delta N_q = N_q - \left< N_q \right>$ q can be any conserved quantum number

(net-baryon, net-charge, net-strangeness etc.)

Mean, variance, skewness, kurtosis

$$M=C_1,~~\sigma^2=C_2,~~S=rac{C_3}{\sigma^3},~~\kappa=rac{C_4}{\sigma^4}$$

- * Higher moments of conserved quantities are sensitive to correlation length $\langle (\delta N_q)^2 \rangle \sim \zeta^2 \quad \langle (\delta N_q)^3 \rangle \sim \zeta^{4.5} \quad \langle (\delta N_q)^4 \rangle \sim \zeta^7$
- $\star\,$ Non-monotonic variations of $S\sigma=C_3/C_2,\,\kappa\sigma^2=C_4/C_2$ with beam energy are believed to be good signatures of CP

Ref: STAR: PRL 112, 032302 (2014); PRL 102, 032301 (2009)

CBM experiment

- $\star\,$ Fixed target experiment
- $\star\,$ SIS 100: Au + Au collision, $\sqrt{s_{NN}}=2.7-4.9~{\rm GeV}$
- \star High interaction rate
- \star High statistics data
- $\star\,$ Density in the center of the fireball expected to exceed few times greater than density of nucleus

Challenges of higher moments measurements at CBM

 \star Particle identification

 \star Non-trivial variations of efficiency \times acceptance with p_T and rapidity (proper method of corrections needed)

 \star Proper vertex identification in multiple collisions

Ref: CBM overview talk at QM2019 by Viktor Klochkov; EPJA 53, 60 (2017); The CBM Physics Book, Lect. Notes Phys. 814, Springer 2011; PRC 75 (2007) 034902

Simulation details

- \star Event generators: UrQMD
- ★ Collision: Au+Au
- * Energy: $E_{lab} = 10 \text{ AGeV}$ ($\sqrt{s_{NN}} = 4.72 \text{ GeV}$)
- * Events: 5 M (minimum bias)

Detectors used:

MVD, STS, RICH, TOF MVD: Vertex information STS: Momentum information RICH: Electron identification TOF: Hadron identification **Detector acceptance:** $1.5 < n < 3.8 (25^{\circ} > \theta > 2.5^{\circ})$

Track selection

Distributions before applying cuts:

Particle identification using TOF

Detector provides time of flight (*t*)

$$rac{1}{eta}=\sqrt{1+\left(rac{m}{p}
ight)^2}=rac{tc}{L}, \hspace{0.5cm} m^2=p^2\left(\left(rac{1}{eta}
ight)^2-1
ight)$$

* Clean particle identification for bulk properties studies

Subhasis Samanta

Centrality selection

- \star Centrality detectors: STS, PSD
 - **Detector used:** STS

To remove auto correlation in net-proton study

- $\star\,$ Charge particles selected excluding p,\bar{p}
- $\star~m^2 < 0.4~({
 m GeV^2/c^4})$

Centrality (%)	N _{ch}
0-5	$ m N_{ch} \geq 71$
5 - 10	$60 \leq N_{ch} < 71$
10-20	$44 \leq N_{ch} < 60$
20-30	$32 \leq N_{ch} < 44$
30-40	$23 \leq \mathrm{N_{ch}} < 32$
40-50	$16 \leq N_{ch} < 23$
50-60	$10 \leq N_{ch} < 16$
60-70	$6 \leq N_{ch} < 10$
70-80	$4 \le N_{ch} < 6$

Multiplicities are uncorrected for efficiency and acceptance

Subhasis Samanta

Proton (anti-proton) selection

- ★ Purity > 96 %
- \star Efficiency decreases at high p_T due to the detector acceptance
- $\star\,$ Efficiency for 0-5 % and 70 -80 % centralities are $\simeq 62$ % and $\simeq 46$ %

Proton (anti-proton) multiplicity distributions

Uncorrected distributions for efficiency and acceptance

Subhasis Samanta

Proton (anti-proton) multiplicity distributions

(Uncorrected distributions for efficiency and acceptance)

- \star Proton multiplicities follow negative binomial distribution
- * Number of \bar{p} is very less compared to p $(\bar{p}/p = 7.8 \times 10^{-5} (0.5 \%), \bar{p}/p = 2.5 \times 10^{-4} (70 - 80 \%)$ from UrQMD)
- \star Proton distributions are skewed more to the right side of the mean

Net-proton multiplicity distributions

Uncorrected for efficiency and acceptance

- $\star\,$ Mean and variance decreases from central towards the peripheral collisions
- $\star\,$ Distributions are skewed more to the right side of the mean

Subhasis Samanta

C_n of net-proton vs centrality (%)

Centrality bin width correction

$$C_n = \sum_r w_r C_{n,r}$$

 $w_r = rac{n_r}{\sum_r n_r}$
 $\sum_r w_r = 1$
sum is over multiplicity bins

- * CBWC done to suppress volume fluctuations
- Statistical error estimation is done using Delta theorem

Ref: Advanced Theory of Statistics: Vol.1, London (1945); Asymptotic Theory of Statistics and Probability, Springer (2008); JPG 39, 025008 (2012); JPG 40, 105104 (2013)

Subhasis Samanta

Correction of cumulants of net-proton using Unfolding method

Algorithm used: RooUnfoldBayes Relationship between measured and true distribution: y = Rxy = measured, x = true, R = response matrix

60

 \star 50 % events are used to construct R

*We are able to get back cumulants of 'True', even if the efficiency is non-binomial and has non-trivial dependence on p_T and rapidity

Ref: NIMA 362, 487 (1995)

No. of event

10

10

10

10

10

Ideal Hadron Resonance Gas model

- $\star\,$ System consists of all the hadrons including resonances (non-interacting point particles)
- \star Hadrons are in thermal and chemical equilibrium
- \star The grand canonical partition function of a hadron resonance gas: $\ln Z = \sum_i \ln Z_i$
- \star For *i* th hadron/resonance,

$$\begin{aligned} \ln Z_i^{id} &= \frac{Vg_i}{2\pi^2} m_i^2 T \sum_{j=1}^\infty (\pm 1)^{j-1} (z^j/j^2) K_2(jm_i/T), \ \ z = exp(\mu/T), \\ \mu_i &= B_i \mu_B + S_i \mu_S + Q_i \mu_Q \end{aligned}$$

- The + (-) sign refers to bosons (fermions)
- The first term (j = 1) corresponds to the classical ideal gas
- Width of the resonances are ignored

Success of IDHRG

 \star Can describe hadronic multiplicities

S. Samanta et al. JPG 46, 065106 (2019); LQCD data: A. Bazavov et al. (HotQCD), PRD 90, 094503 (2014), Andronic, A. et al. PLB673, 142 (2009)

Problem to quantify χ_{BS} , C_{BS}

* IDHRG fails to describe χ_{BS} , $C_{BS} = -3\chi_{BS}^{11}/\chi_{S}^{2}$

\Rightarrow Interaction is needed

Subhasis Samanta

Classical Virial Expansion (Non-relativistic)

$$P = rac{NT}{V} \left(1 + \left(rac{N}{V}
ight) B(T) + \left(rac{N}{V}
ight)^2 C(T) + ..
ight)$$

- \star The first term in the expansion corresponds to an ideal gas
- * The second term is obtained by taking into account the interaction between pairs of particles and subsequent terms involve the interaction between groups of three,four, etc. particles
- \star *B*,*C*,... are called second, third, etc., virial coefficients

Second virial coefficient

$$B(T) = rac{1}{2}\int (1-e^{-U_{12}/T})dV$$

 U_{12} is the two body interaction energy

Relativistic Virial Expansion

$$egin{aligned} &\ln Z = \ln Z_0 + \sum_{i_1,i_2} z_1^{i_1} z_2^{i_2} b(i_1,i_2) \ &b(i_1,i_2) = rac{V}{4\pi i} \int rac{d^3 p}{(2\pi)^3} \int darepsilon \exp\left(-eta(p^2+arepsilon^2)^{1/2}
ight) \left[\left\{S^{-1} rac{\partial S}{\partialarepsilon} - rac{\partial S^{-1}}{\partialarepsilon}S
ight\}
ight] \end{aligned}$$

aa
ightarrow R
ightarrow aa, ab
ightarrow R
ightarrow ab, aab
ightarrow R
ightarrow aab etc.

- $\star~z_1$ and z_2 are fugacities of two species ($z=e^{eta\mu}$)
- $\star\,$ The labels i_1 and i_2 refer to a channel of the S-matrix which has an initial state containing i_1+i_2 particles

Second virial coefficient

$$b_2=b(i_1,i_2)/V$$
 where $i_1=i_2=1$

 $egin{aligned} &\pi\pi o R o \pi\pi \ &\pi K o R o \pi K \ &K K o R o K K \ &\pi N o R o \pi N \ & ext{etc.} \end{aligned}$

Subhasis Samanta

Interacting part of pressure

b_2 in terms of phase shift

$$b_2 = rac{1}{2\pi^3eta}\int_M^\infty darepsilonarepsilon^2 K_2(etaarepsilon)\sum_{l,l}{}^{'}g_{l,l}rac{\partial \delta_l^{l}(arepsilon)}{\partialarepsilon}$$

$$egin{aligned} \mathbf{P}_{ ext{int}} &= rac{1}{eta} rac{\partial \ln Z_{int}}{\partial V} = rac{1}{eta} oldsymbol{z}_1 oldsymbol{z}_2 oldsymbol{b}_2 \ &= rac{oldsymbol{z}_1 oldsymbol{z}_2}{2\pi^3 eta^2} \int_M^\infty darepsilon arepsilon^2 K_2(eta arepsilon) \sum_{I,l} {}^{'} oldsymbol{g}_{I,l} rac{\partial \delta_l^I(arepsilon)}{\partial arepsilon} \end{aligned}$$

* Interaction is attractive (repulsive) if derivative of the phase shift is positive (negative)

K-matrix formalism (Attractive part of the interaction)

Scattering amplitude: $S_{ab
ightarrow cd} = \langle cd | S | ab
angle$

Scattering operator (matrix)

S = I + 2iT

S is unitary $SS^\dagger = S^\dagger S = I$

$$(T^{-1} + iI)^{\dagger} = T^{-1} + iI$$

 $K^{-1} = T^{-1} + iI, \quad K = K^{\dagger}$ (i.e., K matrix is real and symmetric)

Phase shift in K-matrix formalism

$$\operatorname{Re} T = K(I + K^2)^{-1}, \quad \operatorname{Im} T = K^2(I + K^2)^{-1} \Rightarrow \operatorname{Im} T / \operatorname{Re} T = K$$

$$K_{ab
ightarrow R
ightarrow ab} = \sum_R rac{m_R \Gamma_{R
ightarrow ab}(\sqrt{s})}{m_R^2 - s}$$

Resonances appear as sum of poles in the K matrix

Partial wave decomposition

$$egin{aligned} S_l = \exp(2i\delta_l) &= 1+2iT_l\ &\Rightarrow T_l = \exp(i\delta)\sin(\delta_l)\ ext{Re}\,T_l &= \sin(\delta_l)\cos(\delta_l), \quad ext{Im}\,T_l &= \sin^2(\delta_l) \end{aligned}$$

$$K = \tan(\delta_l), \quad \delta_l = \tan^{-1}(K)$$

Phase shift: Empirical vs KM

 $\star\,$ Good agreement between the empirical phase shifts of resonances and the K-matrix approach

Subhasis Samanta

Comparison between K-matrix and Breit-Wigner approach

$\star\,$ KM formalism preserves the unitarity of the S matrix and neatly handles overlapping resonances

S. Samanta et al. PRC 97, 055208 (2018)

Subhasis Samanta

Ideal gas limit

- $\star\,$ For a narrow resonance, δ^I_l changes rapidly through π radian around $\varepsilon=m_R$
- $\star \ \delta^I_l$ can be approximated by a step function: $\delta^I_l \sim \Theta(arepsilon m_R)$

$$\star \ \partial \delta_l^I / \partial \varepsilon \approx \pi \delta(\varepsilon - m_R)$$

$$egin{aligned} b_2 &= rac{1}{2\pi^3eta}\int_M^\infty darepsilonarepsilon^2 K_2(etaarepsilon)\sum_{l,l}{}^{'}g_{l,l}rac{\partial \delta_l^l(arepsilon)}{\partialarepsilon} \ &= rac{g_{l,l}}{2\pi^2}m_R^2TK_2(eta m_R) \ &\mathbf{P}_{ ext{int}} = Tz_1z_2b_2 = \mathbf{P}_{ ext{id}}^{ ext{R}} \end{aligned}$$

- $\star\,$ Pressure exerted by an ideal (MB) gas of particles of mass m_R
- $\star\,$ This establishes the fundamental premise of the IDHRG model

Subhasis Samanta

Repulsive interaction from experimental data of phase shift

- * NN interaction: All available data
- * $\pi\pi$ repulsive interaction: δ_0^2
- * KN repulsive interaction: $S_{11}(l_{I,2J}) (\Sigma(1660))$
- * πN repulsive interaction: S_{31} $(l_{2I,2J})$ (Δ (1620)), Δ (1910), N(1720) etc.

* $\Sigma(1660), \Sigma(1750), \Sigma(1915), \Delta(1620)), \Delta(1910), \Delta(1930), N(1720)$ etc. are included in the repulsive part

Ref: SAID [http://gwdac.phys.gwu.edu]

Subhasis Samanta

Results

- * KM: Attractive interaction
- * Total: Attractive + repulsive
- Both KM and Total contain non-interacting part as well
- Repulsive interactions suppress the bulk variables

Subhasis Samanta

 \star For C_{BS} : Improvement compared to IDHRG

S. Samanta et al. PRC 99, 044919 (2019)

Excluded volume hadron resonance gas model

- * Hadrons have finite hard-core radii. (P(V Nb) = NT)* $b = V_{ex} = \frac{16}{3}\pi R^3$ is the volume excluded for the hadron.
- * Pressure and chemical potential in EVHRG model:

$$P(T,\mu_1,\mu_2,..) = \sum_i P_i^{id}(T,\hat{\mu}_1,\hat{\mu}_2,..),$$

$$\hat{\mu}_i = \mu_i - V_{ev,i} P(T, \mu_1, \mu_2, ...)$$

Subhasis Samanta

van der Waals interaction in HRG model (VDWHRG model)

$$\left(P+\left(rac{N}{V}
ight)^2a
ight)(V-Nb)=NT,$$

$$P(T,n) = rac{NT}{V-bN} - a \left(rac{N}{V}
ight)^2 \equiv rac{nT}{1-bn} - an^2$$

where $n \equiv N/V$ is the number density of particles.

$$egin{aligned} P(T,\mu) &= P_{id}(T,\mu^*) - an^2, \qquad \mu^* &= \mu - bP(T,\mu) - abn^2 + 2an \ n &= rac{n_{id}(T,\mu^*)}{1 + bn_{id}(T,\mu^*)} \end{aligned}$$

 $\begin{array}{l} \star \ a = 0 \quad \Rightarrow \text{EVHRG} \\ \star \ a = b = 0 \quad \Rightarrow \text{IDHRG} \end{array}$

Extraction of parameters a and b

$$a = 1250 \pm 150 \ {
m MeV} \ {
m fm}^3, r = 0.7 \pm 0.05 \ {
m fm}$$

$$\chi^{2} = \sum_{i,j} \frac{(R_{i,j}^{LQCD}(T_{j}) - R_{i,j}^{model}(T_{j}))^{2}}{(\Delta_{i,j}^{LQCD}(T_{j}))^{2}},$$

LQCD data of P/T^4 , ε/T^4 , s/T^3 , C_V/T^3 and χ^2_B at $\mu=0$ have been used to calculate χ^2

 $a = 329 \text{ MeV fm}^3, r = 0.59 \text{ fm}$

By reproducing the properties of the nuclear matter ($n_0 = 0.16 \text{ fm}^{-3}$, E/N = -16 MeV) at zero temperature

Ref: V. Vovchenko et al., PRC 91, 064314 (2015)

Results- VDWHRG model

★ Agreement between LQCD and VDWHRD

Subhasis Samanta

Phase transition in VDWHRG model

- $\star\,$ Observed first order phase transition
- $\star\,$ Critical point at T=62.1 MeV, $\mu_B=708$ MeV
- $\star\,$ Comparable the CP obtained by using the holographic gauge/gravity correspondence

S. Samanta et al., PRC 97, 015201 (2018), Holographic: PRD 96, 096026 (2017)

Subhasis Samanta

Summary

- $\star\,$ Studied the feasibility of doing fluctuation analysis with conserved charges in Au+Au collisions at 10 AGeV with CBM detector using simulated events from UrQMD.
- Clean proton identification with high purity is possible and hence one can study the net-proton (proxy for net-baryon) higher order moments using CBM detector.
- $\star\,$ Efficiency and detector effects were corrected for using unfolding techniques and original distributions and cummulants recovered.
- * An extension of HRG model is constructed to include interactions using relativistic virial expansion of partition function (S-matrix formalism)
- * Effect of interaction is more visible in $\chi^2_Q, \chi^2_B \chi^4_B, C_{BS}$
- $\star\,$ We find a good agreement for the C_{BS} (without adding extra resonances) and lattice QCD simulations

Thank you