

INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science – MPD program, co-financed by the European Union within the European Regional Development Fund

ϕ meson production in proton-proton collisions in the NA61/SHINE experiment at CERN SPS

Antoni Marcinek

H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Białasówka, 28 April 2017

Outline

Introduction

2 Analysis methodology

3 Results

Introduction

$\phi=s\overline{s}$ meson according to PDG 2014

- Mass $m = (1019.461 \pm 0.019) \,\mathrm{MeV}$
- Width $\Gamma = (4.266 \pm 0.031) \, \mathrm{MeV}$
- $\mathcal{BR}(\phi \to K^+K^-) = (48.9 \pm 0.5)\%$

Goal of the analysis

• Differential ϕ multiplicities in p+p collisions measured in NA61/SHINE

- $\rightarrow~{\rm from~invariant}$ mass spectra fits in $\phi \rightarrow K^+K^-$ decay channel
- ightarrow as function of rapidity ${
 m y}$ and transverse momentum p_T

Motivation

- To constrain hadron production models
 - $\rightarrow \phi$ interesting due to its hidden strangeness (ss)
- Reference data for Pb+Pb at the same energies

NA61/SHINE experiment

General info

- Fixed target experiment in the North (experimental) Area of CERN SPS
- Successor of NA49
- Beams
 - hadrons (secondary)
 - ions (secondary and primary)
- \sim 150 physicists \rightarrow IFJ PAN group (6 people) since June 2016
- Physics active since 2009

Physics programme

SHINE = SPS Heavy Ion and Neutrino Experiment

Heavy ion physics

- spectra, correlations, fluctuations
- critical point
- onset of deconfinement
- * EM interactions with spectators

Cosmic rays and neutrinos

- precision measurements of spectra
- cosmic rays: Pierre Auger Observatory, KASCADE
- neutrinos: T2K, Minerνa, MINOS, NOνA, LBNE

Physics programme

SHINE = SPS Heavy Ion and Neutrino Experiment

Heavy ion physics

- spectra, correlations, fluctuations
- critical point
- onset of deconfinement
- * EM interactions with spectators

Cosmic rays and neutrinos

- precision measurements of spectra
- cosmic rays: Pierre Auger Observatory, KASCADE
- neutrinos: T2K, Minerνa, MINOS, NOνA, LBNE

NA61/SHINE detector

liquid H₂ target

Performance

- total acceptance $\sim 80\,\%$
- momentum resolution $\sigma(p)/p^2 \sim 10^{-4}\,{\rm GeV^{-1}}$
- track reconstruction efficiency $> 95\,\%$

Data selection

Events

- inelastic
- in the target
- with well measured main vertex

TPC tracks

- from main vertex
- well reconstructed
- number of points in TPCs → accurate dE/dx and momentum
- with dE/dx corresponding to kaons (PID cut)

Kaon candidate selection — PID cut

- Selection done with dE/dx
- Accept tracks in ± 5 % band around kaon Bethe-Bloch curve (area between black curves in right picture)
- Losses due to efficiency of this selection corrected with tag-and-probe method

Signal extraction

phase space binning, invariant mass spectrum

Signal extraction

phase space binning, invariant mass spectrum

Signal

Convolution of:

- relativistic Breit-Wigner $f_{\rm relBW}(m_{\rm inv};m_\phi,\Gamma)$ resonance shape
- q-Gaussian f_{qG}(m_{inv}; σ, q) broadening due to detector resolution

Background

Obtained with the event mixing method:

• Kaon candidate taken from the current event is combined with candidates from previous 500 events to create ϕ candidates in the mixed events spectrum

Fitting function

$$f(m_{\mathsf{inv}}) = N_{\mathsf{p}} \cdot (f_{\mathsf{relBW}} * f_{\mathsf{qG}})(m_{\mathsf{inv}}; m_{\phi}, \Gamma, \sigma, q) + N_{\mathsf{bkg}} \cdot B(m_{\mathsf{inv}})$$

Signal extraction

tag-and-probe method \rightarrow ATLAS, LHCb

- Goal: to remove bias of N_{ϕ} due to PID cut efficiency ε
- Simultaneous fit of 2 spectra:
 - tag at least one track in the pair passes PID cut

$$N_{\rm t} = N_{\phi} \varepsilon (2 - \varepsilon)$$

probe — both tracks pass PID cut

$$N_{\sf p} = N_{\phi} \varepsilon^2$$

Normalization and corrections

Uncertainties

- Total systematic uncertainty = $\sqrt{\sum \sigma_i^2}$
- For p+p @ 40 GeV additional bin-independent 3 % due to $c_{\rm MC}$ averaging
- Statistical uncertainty dominates

Double differential spectra: p+p @ 158 GeV

- Pythia describes spectra shapes best, UrQMD slightly too long tail, EPOS clearly too short tail
- Fit $p_T e^{-m_T/T} \rightarrow \text{extrapolation to } p_T = \infty \rightarrow \text{tail} < 1 \%$

Double differential spectra: p+p @ 158 GeV

Double differential spectra: p+p @ 80 GeV

- Pythia describes spectra shapes best, UrQMD slightly too long tail, EPOS clearly too short tail
- Fit $p_T e^{-m_T/T} \rightarrow \text{extrapolation to } p_T = \infty \rightarrow \text{tail} < 4 \%$

Double differential spectra: p+p @ 80 GeV

Rapidity

- EPOS and UrQMD shape comparable to data, Pythia slightly narrower
- Fit Gaussian $e^{-y^2/2\sigma_y^2} \rightarrow \text{extrapolation to } y = \infty \rightarrow \text{tails: } 3\% \text{ for 158 GeV}, 7\% \text{ for 80 GeV}$
- NA61/SHINE consistent with NA49

Transverse mass spectra at midrapidity

Thermal fit results		
$p_{\rm beam} [{\rm GeV}]$	T_{ϕ} [MeV]	T_{π^-} [MeV]
158	$150 \pm 14 \pm 8$	$159.3 \pm 1.3 \pm 2.6$
80	$148 \pm 30 \pm 17$	$159.9 \pm 1.5 \pm 4.1$

Single differential spectra: p+p @ 40 GeV

p_T

- Pythia agrees best, UrQMD similar, EPOS spectrum too short tail
- extrapolation tail < 1 %

у

UrQMD agrees with data, EPOS bit too narrow, Pythia even narrower

• extrapolation tail $5\,\%$

Single differential spectra: p+p @ 40 GeV

• First ϕ production measurements for p+p @ 40 GeV

p_T

Pythia agrees best, UrQMD similar, EPOS spectrum too short tail

• extrapolation tail $< 1\,\%$

у

UrQMD agrees with data, EPOS bit too narrow, Pythia even narrower

• extrapolation tail 5%

Reference data for Pb+Pb: σ_y = width of dn/dy

Comparison of particles / reactions

- All but ϕ in Pb+Pb:
 - $\sigma_{\rm y}$ proportional to $y_{\rm beam}$ with the same rate of increase
- two new ϕ points in p+p emphasize peculiarity of ϕ in Pb+Pb

Coalescence

• For p+p only 40 GeV compatible with production through K^+ K^- coalescence

Reference data for Pb+Pb: total yield

- ϕ/π ratio increases with collision energy
- Production enhancement in Pb+Pb about 3×, independent of energy
- Enhancement systematically larger than for kaons, comparable to K⁺
 - $\rightarrow\,$ for K^- consistent with strangeness enhancement in parton phase (square of K^- enhancement)

Comparison with world data and models

p+p world data

Results consistent with world data, much more accurate

Models

- EPOS close to data, Pythia underestimates experimental data, UrQMD underestimates $\sim 2 \times$, HRG (thermal) overestimates $\sim 2 \times$
- EPOS rises too fast with $\sqrt{s_{NN}}$

Results

Differential multiplicities of \u03c6 mesons in p+p:

158 GeVfirst 2D (y and p_T), more accurate than $2 \times 1D$ (y or p_T) NA4980 GeV2D, first at this energy40 GeV $2 \times 1D$, first at this energy

Comparison with experimental data

- Results consistent with p+p world data, but much more accurate!
- Emphasize peculiarity of longitudinal expansion (σ_y) in Pb+Pb
- Confirm enhancement in Pb+Pb, independent of energy in considered range, similar to kaons

Comparison with models

- Each describes well either p_T or y shape, but not both
- None is able to describe total yields

Vertex z cut choice

loose vertex $z \operatorname{cut}$

- Accepts windows of LHT.
- Small $c_{\rm MC} \rightarrow$ no in-target events removed due to vertex z resolution.
- Requires EMPTY target subtraction to remove background from windows.

tight vertex z cut

- Removes interactions in windows of LHT.
- Large c_{MC} → in-target events removed due to vertex z resolution.
- Negligible EMPTY target contribution (no windows) \rightarrow no EMPTY subtraction.

Empty target statistics — 158 GeV

 EMPTY target subtraction requires division of these stats in the same bins as for FULL target analysis → clearly not feasible.

Example 1D y binning fit to constrain ε

Example 2D binning fits

Białasówka, 28 April 2017 5/38

Antoni Marcinek (IFJ PAN)

φ production in p+p in NA61/SHINE

Integral value vs integration cut-off

- N integral using given limit, N_{ref}— integral using edges of m_{inv} histogram as limits.
- Fits with $y_{\infty} a/|x m_{\phi}|^{b}$ to obtain y_{∞} value of relative difference when limit is infinite. This allows to calculate correction / bias of the integral for each value of limit.

$$c_{\rm R} = \frac{N_{\rm ref} + N_{\rm R}}{N_{\rm ref}} = \frac{y_\infty}{100\,\%} + 1 \qquad \qquad c_{\rm L} = \frac{N_{\rm L} + N_{\rm ref}}{N_{\rm ref}}$$

Reference lower limit for rel. Breit-Wigner already gives at least ‰ accuracy.

Bias / correction due to integration cut-off

Introduction to systematic studies

- Biases in this analysis may arise as consequence of
 - wrong choice of analytical parametrizations for resonance shape and detector resolution effect
 - Choice of integration range of signal parametrization curve to obtain the yield
 - unaccounted effects in background description
 - constraints used in fitting
 - wrong assumptions associated with kaon selection efficiency
 - improper MC corrections of detector effects
- First 2 points methods used up to now are changed (changes central values): Voigtian + integration in broad range → q-Gaussian ⊗ relativistic Breit-Wigner + correction to integral
- Other points systematic uncertainties are estimated using improved methods for signal extraction.

Signal parametrization choice

- Initially used Voigtian = Gaus⊗BW due to technical convenience
- Using MC decided to change Gaussian \rightarrow q-Gaussian (explained later)
- For φ relativistic Breit-Wigner (used in NA49) better than non-relativistic, which yields couple % sub-threshold production.
- Change in χ^2 / ndf due to effects in background (explained later)

Quantitative comparison of signal parametrizations

- Yields are corrected integrals in $(-\infty, +\infty)$ (explained later)
- Old parametrization yielded up to 10% underestimated results.
- About 2% due to detector resolution model
- About 5% due to resonance model

Background distortions

- Underestimation of background for high m_{inv} in Tag $\rightarrow K^{*0}$
- Underestimation for low $m_{\rm inv},$ overestimation of background for high $m_{\rm inv}$ in Probe \rightarrow electrons
- Using MC (next slides) up to 10% systematic effect

MC vs data

Mock PID cuts tuned in MC (top) to have similar shapes as in data (bottom).

MC dirty vs clean

• In cleaned sample (no electrons, nothing from K^{*0}) no background problems observed.

Source of low m_{inv} effect in MC — electrons

- Picture compatible with correlation due to Coulomb interaction (studied e.g. as background effect in HBT correlations for kaons and pions)
- Effect stronger for electrons as compared to hadrons due to lower mass of electrons?

- Up to 10% systematic effect coming mostly from $K^{*0} \to {\rm assign}$ 10% systematic uncertainty bin independent
- Although in most bins effect about 5%, assigning bigger uncertainty possibly takes into account mismatches between MC and data

Resolution model

- MC with $\Gamma = 0$ (20M pp@158 events) provides insight into the effect of detector resolution on m_{inv} .
- It turns out that the default choice of Gaussian model is not optimal → tested also Lorentz and q-Gaussian:

- Black dots are the same in all 3 pictures.
- Each model has a location parameter m_{ϕ} and width parameter σ .
- q-Gaussian has additional shape parameter q:
 - $q = 2 \Leftrightarrow$ shape = Lorentz
 - $q \rightarrow 1$ shape \rightarrow Gaussian

Choice of model

• q-Gaussian clearly favoured.

Parameters stability: σ

- Weighted sample standard deviation $7-9\% \sigma$ fitted in full phase space, depending on model, with smallest for Gaussian.
- These values used to estimate systematic uncertainties ($\approx 1\%$) associated with assumption of invariant σ in phase space bins.

Parameters stability: q (only for q-Gaussian)

- Weighted sample standard deviation 6% q fitted in full phase space.
- These value used to estimate systematic uncertainties (< 2%) associated with assumption of invariant q in phase space bins.
- *q* needs to be fixed to MC average value of 1.5 in fits to data due to background distortions (q-Gaussian can adapt its shape via *q* to fit background as signal)

Parameters stability: m_{ϕ}

- Weighted sample standard deviation $\approx 0.5\% \Gamma$, $0.002\% m_{\phi}$ fitted in full phase space, for all models.
- Translates into < 0.5% systematic uncertainty.

Systematics due to constraints on parameters

- "+", "-" superscripts fits redone with listed fixed parameters increased/decreased by factors obtained from MC study from previous slides
- Also shown refits with fixed parameters shifted by their statistical errors from fits in full phase space
- Systematic uncertainty: 2%, bin independent or should sum up, or bin by bin?

- Known sources of systematic error in tag-and-probe:
 - non-constant value of PID efficiency (ε) within phase space bins
 - constraints on ε in (y, p_T) bins fits if ε non-constant between bins
- Known and unknown effects studied by variation of window size around Bethe-Bloch (range +/- 30% of default/reference window size = $\pm 5\%$ Bethe-Bloch value)
- Done for 2 cases of fitting strategy:
 - default value of ε fitted in ${\bf y}$ bin in full p_T range is used to soft-constrain fits in $({\bf y},p_T)$ bins
 - free ε in (\mathbf{y}, p_T) bins fits

to validate these strategies

Fit results: ε in "constrained" strategy

• Apart from one case in the last y bin, ε changes monotonically with window size

agrees with expectation

Fit results: ε in "free" strategy

- Visible problems with monotonic dependence of ε on window size
- contrary to expectation fit instabilities?

Fit results: N_{ϕ} in "constrained" strategy

- Differences between N_ϕ values for the given and the reference cut as percentage of results for reference cut
- If no systematic error \rightarrow all points should cluster at zero; standard deviation = measure of systematic uncertainty

Fit results: N_{ϕ} in "free" strategy

- Differences between N_ϕ values for the given and the reference cut as percentage of results for reference cut
- If no systematic error \rightarrow all points should cluster at zero; standard deviation = measure of systematic uncertainty
- Clearly more spread than in "constrained" case

Tag-and-probe systematic uncertainties

- "constrained" strategy yields smaller systematic uncertainties than "free"
- Above, together with better behaviour of ε and smaller statistical uncertainties clearly favours "constrained" strategy over the "free" one.

Main vertex Z position cut variations

- Differences between normalized and corrected yield values for the given and the reference cut as percentage of results for reference cut = 18 cm
- If no systematic error \rightarrow all points should cluster at zero; standard deviation = measure of systematic uncertainty

Systematic uncertainty due to vertex Z position cut

Magnitude similar to tag-and-probe systematics

Number of TPCs points cuts variations

- Differences between normalized and corrected yield values for the given and the reference cut as percentage of results for reference cut = $n_{all} > 30, n_{VTPC} > 15$
- $n_{GAP-TPC} > 4$ not varied; also shown result after removing Bx,By cut
- If no systematic error \rightarrow all points should cluster at zero; standard deviation = measure of systematic uncertainty

Systematic uncertainty due to track quality cuts

Magnitude smaller than for to tag-and-probe and vertex cut systematics

Model dependence of MC correction

MC correction may depend on

- ϕ model shape of generated ϕ spectrum
- event model distributions of other particles and correlations between particles
- detector model geometry, materials, models of interactions with material

Removing ϕ model dependence

- calculate correction is small bins; on application level use
 - weighting of entries with the correction
 - averaging of correction with fit of data spectrum (NA49)
- reweight existing MC (Antoni's pp h- paper)

Reducing systematic uncertainty of correction

- detector model dependence unavoidable; can only improve the model
- $\bullet~\mbox{event}$ model \rightarrow find better one, or
- factorize correction into accurate large part that doesn't depend on event model and smaller that depends

- Single correction is calculated and applied to data, but one can look how different effects contribute to this correction.
- Breakdown realised by sequentially applying selection cuts. For ϕ it means that both *K* need to pass the given track cut.
- Conditions probably are not statistically independent, so change of cuts sequence may change the breakdown.
- Overall systematic uncertainty might be reduced if correction factorized into dominant, accurate part and subdominant, less accurate part.

registration efficiency

Correction

$$c_{\rm geom} = \left(\frac{n_{\rm reg}}{n_{\rm gen}}\right)^{-1}$$

where $n_{\rm reg}$ — spectrum of generated (SimEvent) tracks that pass the cuts:

- Number of GEANT points in all TPCs > 30
- Number of GEANT points in VTPCs > 15 or GTPC > 4
- Supposed to correct for particle registration efficiency (geometry, interactions with detector, K decays)
- Probably does not take into account correctly the K decay effect
- No dependence on the model of event production \rightarrow candidate to factorize out and calculate from large statistics, well binned, flat phase space MC

trigger bias

Correction

$$c_{\rm T2} = \left(\frac{n_{\rm T2}}{n_{\rm reg}}\right)^{-1}$$

where n_{T2} — spectrum of generated (SimEvent) tracks that pass the cut reg and events with T2 trigger (no GEANT hits in S4).

- Corrects for trigger bias due to S4 killing inelastic events
- Expected to be bigger at high energies (many high momentum tracks) and smaller at low energies
- Depends on the model of event production

vertex cuts bias

Correction

$$c_{\rm Vertex} = \left(\frac{n_{\rm ver}}{n_{\rm T2}}\right)^{-1}$$

where $n_{\rm ver}$ — spectrum of generated (SimEvent) tracks that pass the cut ${\rm reg}$, ${\rm T2}$ and events pass all vertex cuts

- Corrects for bias due to vertex cuts removal of low multiplicity events
- Expected to be smaller at high energies (large track multiplicities) and bigger at low energies
- Depends on the model of event production

track cuts bias

Correction

$$c_{\mathrm{Track}} = \left(\frac{n_{\mathrm{sel}}}{n_{\mathrm{ver}}}\right)^{-1}$$

- Corrects for reconstruction efficiency and bin migration, since $n_{\rm sel}$ binned according to the reconstructed momentum
- Reconstruction efficiency
 - expected to be small for proton-proton due to low track multiplicities
 - depends on the model of event production
- Bin migration
 - depends on momentum resolution

φ production in p+p in NA61/SHINE