Stopping of Muons in Helium-3 and Deuterium

V.M. Bystritsky, V.V. Gerasimov

Joint Institute for Nuclear Research, Dubna

J. Wozniak

AGH University of Science and Technology, Cracow

Abstract. Stopping power ratio of helium-3 and deuterium atoms for muons slowed down in $D/{}^{3}$ He gas mixture was measured using 34.0 MeV/c muon beam at PSI meson factory. We present the measurement method and the analysis of experimental data.

Collaboration Dubna-Fribourg-Cracow-PSI

MUON INDUCED PROCESSES IN HELIUM AND HELIUM-DEUTERIUM MIXTURES

Experiments performed at PSI, μ -E4 muon channel

V.F. Boreiko V.M. Bystritsky W. Czapliński A. Del Rosso M. Filipowicz V.V. Gerasimov O. Huot P.E. Knowles F. Mulhauser V.N. Pavlov F.M. Penkov C. Petitjean N.P. Popov V.G. Sandukovsky L.A. Schaller H. Schneuwly V.A. Stolupin V.P. Volnykh J. Woźniak

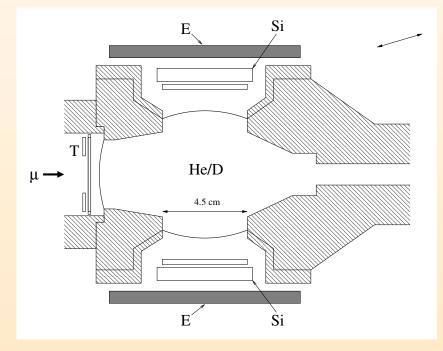
- measuring $\mu d^3 He$ fusion
- nuclear muon capture by ³He
- various μ -atomic, μ -molecular characteristics
- muon stopping

Introduction

- Spatial distribution of muon stops gives an information on the distribution of formatted μ -atoms
- decay electrons are used as the markers of the muon stops:

$$\mu^-$$
 slowing-down \rightarrow formation of μ -atom \rightarrow μ -decay \rightarrow $e^- + \nu_\mu + \tilde{\nu}_e$

• experimental set-up



- \triangleright muon beam momentum $P_{\mu}=34.0$ MeV/c, spread 1.23 FWHM
- ▷ gas targets: pure ³He, D/³He mixture (0.0496 He concentration)
- different gas densities (0.034 0.058 LHD)
- ▶ pressure 5.1 6.9 atm
- \triangleright temperature \sim 33 K

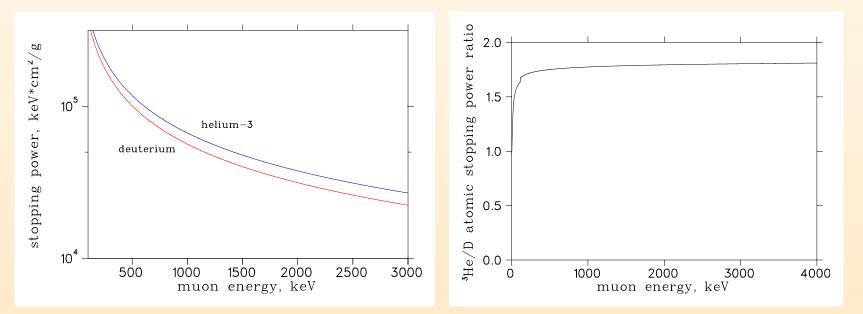
Stopping power

Per-atom stopping power [MeV·cm²/atom]

$$S_i = \frac{1}{n_i} \left(-\frac{dE}{dx} \right)_i = A_i \left(-\frac{dE}{d\xi} \right)_i, \qquad S = \sum c_i S_i \qquad i = {}^3 \text{He, D}$$

 n_i - numeric density, A_i - atomic mass, c_i - atomic concentration, ξ - mass thickness.

Stopping power ratio: $\tilde{s} = S_{^{3}\text{He}}/S_{\text{D}}$

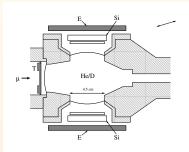


Calculated stopping powers (using data of J.F.Ziegler et al., The Stopping..., Pergamon Press, N.Y., 1985)

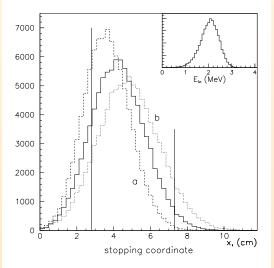
Measurement method

Muon slowing-down simulation via Monte Carlo; $\mu\text{-stops}$ distributions

- Monte Carlo code (R. Jacot-Guillarmod, Fribourg University); Ziegler's parametrisation of the stopping powers
- conditions of the experiment
 - ▷ one target D + 0.05^{3} He, fixed density φ_{mix} = 0.0585
 - ▷ a set of pure ³He targets, different densities φ_{He}



• calculated stopping distributions for $D/{}^{3}He$ target and ${}^{3}He$ target, example:



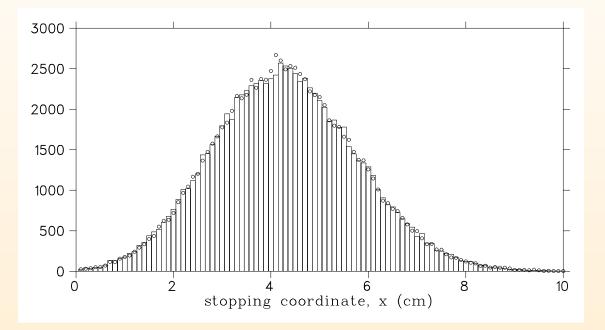
solid line: D/³He mixture, $\varphi_{mix} = 0.0585$ dotted,dashed lines: pure ³He, densities: (a) $\varphi_{He} = 0.0380$, (b) $\varphi_{He} = 0.0320$

in the insert: energy spectrum of incident muons (E_{in})

Jan Wozniak, AGH University of Science and Technology, Cracow

Measurement method

Equivalence of the stopping distributions by Monte Carlo simulation



Histo: $D/^{3}$ He mixture.

Circles: pure ³He with equivalent density $\tilde{\varphi}_{He}$.

$$\chi^2/df = 0.92$$

Similar equivalency is also achieved in the plane perpendicular to the moun beam direction

Measurement method

The range of muon

$$r_{\mu} = \int_{0}^{E_{in}} \frac{1}{-\left(\frac{dE}{dx}\right)} dE = \frac{N_a}{\varphi \, n_o} \int_{0}^{E_{in}} \frac{1}{\sum c_i S_i} dE \tag{1}$$

- Keeping constant the beam momentum and changing the gas density in a given type of the target (³He) one can obtain the same μ -stopping distribution as for another fixed-density target (D+³He mixture)
- Such equivalence of muon ranges (for the whole initial energy spectrum of muons) is a key for the stopping power ratio measurement

Equivalence of the stopping distributions

• When the muon ranges are equal for both media then taking into account the similarity of the individual stopping powers of helium-3 and deuterium one obtains from (1) a formula for the mean stopping powers ratio:

$$\langle \tilde{s} \rangle = \tilde{s}(\overline{E}) = S_{3_{\text{He}}}/S_{\text{D}} = \frac{c_{\text{D}}\varphi_{mix}}{\tilde{\varphi}_{\text{He}} - c_{\text{He}}\varphi_{mix}}.$$
 (2)

- $\tilde{\varphi}_{
 m He}$, φ_{mix} equivalent densities of the pure 3 He target and the mixture D/ 3 He target.
- Equation (2) gives the receipe for the measurement of $< \tilde{s} >$ -value

Experiment

Experiment conditions

Run	Target	Temp.	Pressure	φ	C_{He}	N_{μ}
		[K]	[atm]	[LHD]	[%]	$[10^9]$
1	3He	32.9	6.92	0.0363	100	1.3625
2			6.85	0.0359		0.7043
3			6.78	0.0355		0.7507
4			6.43	0.0337		0.4136
5	$D/^{3}He$	32.8	5.11	0.0585	4.96	8.875

R-ratio measurement

Target	φ	N_{μ}	N_e	R
	[LHD]	$[10^{9}]$	$[10^6]$	$[10^{-3}]$
3He	0.0363	1.3625	0.5302(14)	0.3891(10)
	0.0359	0.7043	0.2765(10)	0.3926(14)
	0.0355	0.7507	0.2975(10)	0.3963(14)
	0.0337	0.4136	0.1657(8)	0.4007(18)
$D/^{3}He$	0.0585	8.875	3.4635(35)	0.3903(4)
	3He	[LHD] 3He 0.0363 0.0359 0.0355 0.0337	$ \begin{array}{c} [LHD] & [10^9] \\ \hline 3He & 0.0363 & 1.3625 \\ 0.0359 & 0.7043 \\ 0.0355 & 0.7507 \\ 0.0337 & 0.4136 \\ \end{array} $	$[LHD]$ $[10^9]$ $[10^6]$

 $R_{mix}(\varphi = 0.0585) = R_{He}(\varphi_{He}) \rightarrow$

 \triangleright $P_{\mu} = 34.0$ MeV/c was chosen such to stop all entering muons inside the D/³He target.

electron time spectra analysis

 $R(\varphi) = \frac{N_e}{N_{\mu}}$

equivalent ³He density $ilde{arphi}_{He}$

 \triangleright

Jan Wozniak, AGH University of Science and Technology, Cracow

Experiment

When $\tilde{\varphi}_{He}$ is found (i.e. the muon stops numbers¹ are equal for both target gases, ³He and D/³He) it has been also observed experimentally that

 \triangleright R_{Al} (the number of stops in the target walls),

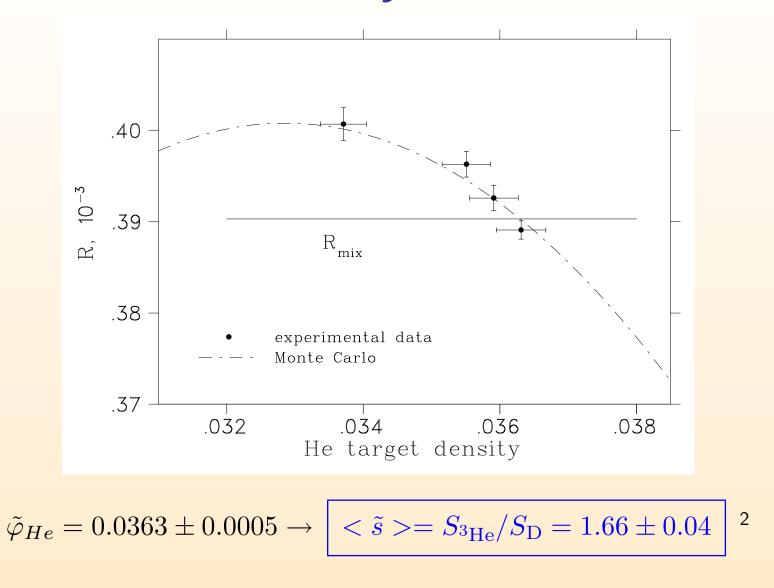
 \triangleright R_{Au} (the number of stops in the entrance gold ring)

not change if D/³He is replaced by ³He($\tilde{\varphi}$).

It's an additional argument for the spatial equivalency of muon stops distributions in ${}^{3}\text{He}(\tilde{\varphi})$ and D/ ${}^{3}\text{He}$) targets.

¹per incident muon

Analysis



²V.M. Bystritsky et al., Eur.Phys.J. D, **42** (2007) 79

Jan Wozniak, AGH University of Science and Technology, Cracow

Mean ratio of the stopping powers

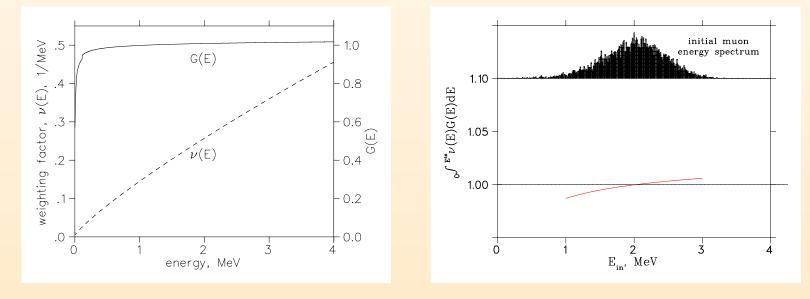
Equality of ranges
$$\int_0^{E_{in}} \frac{dE}{-\left(\frac{dE}{dx}\right)_{mix}} = \int_0^{E_{in}} \frac{dE}{-\left(\frac{dE}{dx}\right)_{He}}$$
 can be rewritten as

$$\int_0^{E_{in}} G(E) \,\nu(E) \,dE = 1,$$

where

$$\nu(E) = \frac{1/S_{He}}{\int_0^{E_{in}} 1/S_{He} \, dE} \qquad \text{is a weight function, } \int_0^{E_{in}} \nu(E) \, dE = 1,$$

and $G(E) = rac{ ilde{arphi}_{He}}{arphi_{mix}(ilde{s}^{-1}(E)c_D + c_{He})}$ (energy dependent via $ilde{s}(E)$).



finaly, $1 = \overline{G} \approx G(\overline{A(E)}) \approx G(A(\overline{E}))$ gives the formula for $< \tilde{s} >$.

Atomic capture in a binary mixture

• Atomic capture probability: $w_D = \frac{1}{1+Ac}, \quad w_{He} = \frac{Ac}{1+Ac},$ (*)

where $A=rac{\sigma(He)}{\sigma(D)}$ - per-atom capture ratio (reduced ratio), $c=c_{He}/c_D$ - ratio of atomic concentrations

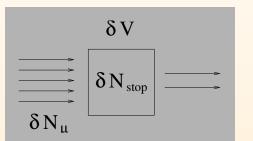
- "A" is usually energy dependent; $\overline{A} = \frac{\overline{\sigma(He)}}{\overline{\sigma(D)}}$ is more useful for experiments.
- The question of averaging.
- No simple relationship exists between the stopping power and the primary atomic capture; slowing down "is working" in MeV keV region, capture occurs at low energies ($\sim < 100$ eV).
- Petrukhin's phenomenological model³: expressions (*) fit well the experimental data for H/He mixture when stopping power ratio \tilde{s} is used instead of A

$$w_D = \frac{1}{1+\tilde{s}c}, \qquad w_{He} = \frac{\tilde{s}c}{1+\tilde{s}c}.$$

³ V.I.Petrukhin and V.M.Suvorov, Zh. Eksp. Theor. Fiz. **70** (1976) 1145

reduced capture ratio

Let through a volume δV located in any given point in the target pass δN_{μ} muons



 $\delta N_{stop} = \delta N_{\mu} n_o \varphi \overline{\sigma} \delta x$

• $\delta N_{stop}^{He} = \delta N_{\mu} n_o \varphi_{He} \overline{\sigma}_{He} \delta x$

$$\delta N_{stop}^{mix} = \delta N_{\mu} n_o \varphi_{mix} (c_D \overline{\sigma}_D + c_{He} \overline{\sigma}_{He}) \delta x$$

for the same stopping distributions in D/³He and in ³He targets:

 $\delta N_{stop}^{He}(\tilde{\varphi}_{He}) = \delta N_{stop}^{mix}(\varphi_{mix})$ for any volume element

• from this
$$ilde{\varphi}_{He}\overline{A} = \varphi_{mix}(c_D + \overline{A}c_{He})$$

or
$$\overline{A} = \frac{\overline{\sigma}(He)}{\overline{\sigma}(D)} = \frac{c_D \varphi_{mix}}{\tilde{\varphi}_{He} - c_{He} \varphi_{mix}}$$

- In general, the quantity \overline{A} can be dependent on concentrations c_D , c_{He} . For a week dependency of the muon energy distribution on mixture composition at low energies, the \overline{A} -value is practically constant and can be interpreted as the mean reduced probability ratio for the muon capture by helium-3 and deuterium atoms.
- Above consideration can justify Petrukhin's model for the H/He mixture.