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RANDOM VARIABLE ...

RANDOM VARIABLE — A ‘MAPPING’ OF THE SET OF
(ELEMENTARY) EVENTS E onto the set of real numbers R.

For instance:
@ height of a person met in the street;
number of people in Cracow down with flu each day;
number of meteorites falling each year per 1 km?;

number of minutes you wait every day for the street-car;

strength of a climbing-rope;

°
"]
("]
@ number of accidents per months at a given street-intersection;
°
@ number of deaths in Cracow in (each) November

"]

a result of every measurement.
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RANDOM VARIABLE ...

and its (CUMULATIVE) DISTRIBUTION FUNCTION

RANDOM VARIABLE — A "MAPPING” OF THE SET OF
(ELEMENTARY) EVENTS E onto the set of real numbers R
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RANDOM VARIABLE ...

and its (CUMULATIVE) DISTRIBUTION FUNCTION

RANDOM VARIABLE — A "MAPPING” OF THE SET OF
(ELEMENTARY) EVENTS E onto the set of real numbers R

X = RANDOM VARIABLE; & — ITS VALUE (REALISATION)
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RANDOM VARIABLE ...

and its (CUMULATIVE) DISTRIBUTION FUNCTION

RANDOM VARIABLE — A "MAPPING” OF THE SET OF
(ELEMENTARY) EVENTS E onto the set of real numbers R

X = RANDOM VARIABLE; £ — ITS VALUE (REALISATION)

we introduce cumulative distribution function: Fx (z) (or shortly: F(x))
as

‘Fx(x) =F(z)=P(X < x)‘

Some textbooks use a slightly different definition

| Px(x) = F(z) = P(X <2)|

It has no any influence in the case of continuous RV; but for a discrete
RV it makes quite a difference
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DISTRIBUTION FUNCTION F'(x)

and its properties;
Q@ 0< F(z) <1 FOR EVERY uz;
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DISTRIBUTION FUNCTION F'(x)

and its properties;
Q@ 0< F(z) <1 FOR EVERY uz;
Q limgy, oo = F(—00) =0 limg; 00 = F(00) = 1;
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DISTRIBUTION FUNCTION F'(x)

and its properties;
Q@ 0< F(z) <1 FOR EVERY uz;
Q limgy, oo = F(—00) =0 limg; 00 = F(00) = 1;

© F(z) 1S A NON-DECREASING FUNCTION;
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DISTRIBUTION FUNCTION F'(x)

and its properties;
Q@ 0< F(z) <1 FOR EVERY uz;
Q limgy, oo = F(—00) =0 limg; 00 = F(00) = 1;
© F(z) 1S A NON-DECREASING FUNCTION;

Q F(x) IS RIGHT-SIDED (AT LEAST) CONTINUOUS:
F(z+0) = F(a);
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DISTRIBUTION FUNCTION F'(x)

and its properties;
Q@ 0< F(z) <1 FOR EVERY uz;
Q limgy, oo = F(—00) =0 limg; 00 = F(00) = 1;
© F(z) 1S A NON-DECREASING FUNCTION;
Q F(x) IS RIGHT-SIDED (AT LEAST) CONTINUOUS:
F(z+0) = F(z);
Q@ Pla< X <b)=F()— Fla);
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DISTRIBUTION FUNCTION F'(x)

and its properties;
Q@ 0< F(z) <1 FOR EVERY uz;
Q limgy, oo = F(—00) =0 limg; 00 = F(00) = 1;

© F(z) 1S A NON-DECREASING FUNCTION;
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... and the probability distribution function:
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... and the probability distribution function:

there exists a finite (or at least enumerable) set of the values
{1,...,2k,...} of the random variable X
which occur with probabilities {p1,...,pk,...}:
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RANDOM VARIABLE OF THE DISCRETE TYPE ...

... and the probability distribution function:

there exists a finite (or at least enumerable) set of the values
{1,...,2k,...} of the random variable X
which occur with probabilities {p1,...,pk,...}:

i=1

The set of all p(x;) values is called probability distribution or probability
function
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RANDOM VARIABLE OF THE DISCRETE TYPE ...

... and the probability distribution function:

there exists a finite (or at least enumerable) set of the values
{1,...,2k,...} of the random variable X
which occur with probabilities {p1,...,pk,...}:

i=1

The set of all p(x;) values is called probability distribution or probability
function

Our cumulative (probability) distribution is given as:

Flz)=P(X <a¢)= )  pi

—oo<x; <x
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cumulative distribution function (left)
and probability function (right)

F(z)=P(X <x) pi =P(X =)
1 — 1
5/6 -— 5/6
4/6 -— 4/6
3/6 -— 3/6
2/61 -— 2/61
1/6f  e—— 1/6
L]
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RANDOM VARIABLE OF THE CONTINUOUS TYPE

There exists : f(z) for —oco <z < 00; f(x) >0, which is related to
F(zx) as

)= [ Oo 7(5)ds
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RANDOM VARIABLE OF THE CONTINUOUS TYPE

There exists : f(z) for —oco <z < 00; f(x) >0, which is related to
F(zx) as

x
F(z) = / f(s)ds
— 00
The two functions have the following properties:

o L-sw) Fw= [ fas
Q /_00 fl@)dz =1;

0 Ly P(X=c)=0;
Q
Pa<X<b)=Pla<X<b)=Pla<X<b)=Pla<X <))
b
=ﬂ®—ﬂ@=/f@ﬂw

a

We call f(x) — the probability density function
‘P(X € (z,z +dx)) = f(z)de. ‘
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RANDOM VARIABLE and NORMAL DISTRIBUTION

here come graphs of the pdf AND cdf for the standardised normal distribution:

Wormsl POF Nerral €0
aa '

03 0w |
g
2 z
E o0z 8 05
H g
g H
g

a1 e

A b
a q
4 2 2 a4 o 1 2 3 a 4 a4 2 a4 9 1z a3 a
x x

http:ifvenan.itl.nist.gov; Jan 5th 2012 Ittp:t l.nist.gov; Jan §th 2012

e play: Wolfram's BELL CURVES
@ play: Wolfram’s Standard Normal Distribution Areas

RANDOM VARIABLE



CHANGE OF VARIABLE

Suppose we ave a RV X of a continuous type and we know its pdf f(x).
Now, we have another RV that is functionally related to X:

Y =Y (X).
Can we say anything about the pdf for Y, g(y)?
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CHANGE OF VARIABLE

Suppose we ave a RV X of a continuous type and we know its pdf f(x).
Now, we have another RV that is functionally related to X:

Y =Y(X).

Can we say anything about the pdf for Y, g(y)?
Simpler case: Y is a monotonic function of X. Then, from a simple
geometrical reasoning (cf. the picture — next slide):

dx
9(y) = d7y f(z)
The dx/dy is the derivative of X with respect to Y. Of course we have
d de\ !
Y _ (% . For a non-monotonic y = y(z) dependence one must
dx dy

take into account that different regions of the X variable may be mapped
into one (the same) region of the Y variable. The g(y) pdf in such a
region will be a sum of f(x) pdf's multiplied by |dxz/dy| over all the
regions of X which have been mapped into the given region of Y.

We shall return to this question when we will be more acquainted with
some types of distributions of Rys.
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CHANGE OF VARIABLE

we must have: +
[ de=gydy AT AT
_dy —r
pdf .
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